High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) ionize and separate ions at reduced pressures of 10-40 mbar and over a wide range of reduced electric field strengths / of up to 120 Td. Their reduced operating pressure is distinct from that of conventional drift tube ion mobility spectrometers that operate at ambient pressure for trace compound detection. High / can lead to a field-induced fragmentation pattern that provides more specific structural information about the analytes.
View Article and Find Full Text PDFA growing demand for low-cost gas sensors capable of detecting the smallest amounts of highly toxic substances in air, including chemical warfare agents (CWAs) and toxic industrial chemicals (TICs), has emerged in recent years. Ion mobility spectrometers (IMS) are particularly suitable for this application due to their high sensitivity and fast response times. In view of the preferred mobile use of such devices, miniaturized ion drift tubes are required as the core of IMS-based lightweight, low-cost, hand-held gas detectors.
View Article and Find Full Text PDFDue to their high sensitivity and compact design, ion mobility spectrometers are widely used to detect toxic industrial chemicals (TICs) in air. However, when analyzing complex gas mixtures, classical ion mobility spectrometry (IMS) suffers from false-positive rates due to limited resolving power or false-negative rates caused by competitive ion-molecule reactions and the resulting suppression of certain analyte ions. To overcome these limitations, high-kinetic energy IMS (HiKE-IMS) was introduced some years ago.
View Article and Find Full Text PDFIons are separated in ion mobility spectrometry (IMS) by their characteristic motion through a gas-filled drift tube with a static electric field present. Chemical dynamics, such as clustering and declustering of chemically reactive systems, and physical parameters, as, for example, the electric field strength or background gas temperature, impact on the observed ion mobility. In high kinetic energy IMS (HiKE-IMS), the reduced electric field strength is up to 120 Td in both the reaction region and drift region of the instrument.
View Article and Find Full Text PDFClassical ion mobility spectrometers (IMS) operated at ambient pressure, often use atmospheric pressure chemical ionization (APCI) sources to ionize organic compounds. In APCI, reactant ions ionize neutral analyte molecules via gas-phase ion-molecule reactions. The positively charged reactant ions in purified, dry air are HO, NO, and O.
View Article and Find Full Text PDFIon mobility spectrometers (IMS) separate ions mainly by ion-neutral collision cross section and to a lesser extent by ion mass and effective temperature. When investigating isotopologues, the difference in collision cross section can be assumed negligible. Since the mobility shift of isotopologues is thus mainly caused by their difference in mass and effective temperature, the investigation of isotopologues can provide important insights into the theory of ion mobility.
View Article and Find Full Text PDFIn High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS), ions are formed in a reaction region and separated in a drift region, which is similar to classical drift tube ion mobility spectrometers (IMS) operated at ambient pressure. However, in contrast to the latter, the HiKE-IMS is operated at a decreased background pressure of 10-40 mbar and achieves high reduced electric field strengths of up to 120 Td in both the reaction and the drift region. Thus, the HiKE-IMS allows insights into the chemical kinetics of ion-bound water cluster systems at effective ion temperatures exceeding 1000 K, although it is operated at the low absolute temperature of 45 °C.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2020
Due to the operation at background pressures between 10-40 mbar and high reduced electric field strengths of up to 120 Td, the ion-molecule reactions in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) differ from those in classical ambient pressure IMS. In the positive ion polarity mode, the reactant ions H(HO), O(HO), and NO(HO) are observed in the HiKE-IMS. The relative abundances of these reactant ion species significantly depend on the reduced electric field strength in the reaction region, the operating pressure, and the water concentration in the reaction region.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
July 2020
High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) are usually operated at an absolute pressure of 20 mbar reaching high reduced electric field strengths of up to 125 Td for controlled reaction kinetics. This significantly increases the linear range and limits chemical cross sensitivities. Furthermore, HiKE-IMS enables the ionization of compounds normally not detectable in ambient pressure IMS, such as benzene, due to new reaction pathways and the inhibition of clustering reactions.
View Article and Find Full Text PDFIn contrast to classical Ion Mobility Spectrometers (IMS) operating at ambient pressure, the High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) is operated at reduced pressures of between 10 and 40 mbar and higher reduced electric field strengths of up to 120 Td. Thus, the ion-molecule reactions occurring in the HiKE-IMS can significantly differ from those in classical ambient pressure IMS. In order to predict the ionization pathways of specific analyte molecules, profound knowledge of the reactant ion species generated in HiKE-IMS and their dependence on the ionization conditions is essential.
View Article and Find Full Text PDFIn contrast to classical ion mobility spectrometers (IMS) operating at ambient pressure, the high kinetic energy ion mobility spectrometer (HiKE-IMS) is operated at reduced pressures between 10-40 mbar. In HiKE-IMS, ions are generated in a reaction region before they are separated in a drift region. Due to the operation at reduced pressure, it is possible to reach high reduced electric field strengths up to 120 Td in both the reaction as well as drift region, resulting in a pronounced decrease in chemical cross sensitivities and a significant enhancement of the dynamic range.
View Article and Find Full Text PDFIon funnels are one of the key components for transferring ions from higher pressure into the vacuum. Typically, ion funnels are constructed of several different plate ring electrodes with a decreasing inner diameter where radio frequency (RF) voltages and electric DC fields are applied to the electrodes to focus and transport ion clouds. In this work, we developed and investigated a simple and low-cost ion funnel design that is based on standard printed circuit boards (PCB) with integrated planar electrodes including the signal distribution network.
View Article and Find Full Text PDFWith recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200.
View Article and Find Full Text PDFIon mobility spectrometry provides information about molecular structures of ions. Hence, high resolving power allows separation of isomers which is of major interest in several applications. In this work, we couple our high-resolution ion mobility spectrometer (IMS) with a resolving power of R = 100 to a time-of-flight mass spectrometer (TOF-MS).
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
February 2018
Human smuggling and associated cross-border crimes have evolved as a major challenge for the European Union in recent years. Of particular concern is the increasing trend of smuggling migrants hidden inside shipping containers or trucks. Therefore, there is a growing demand for portable security devices for the non-intrusive and rapid monitoring of containers to detect people hiding inside.
View Article and Find Full Text PDFOne major drawback of ion mobility spectrometry (IMS) is the dependence of the response to a certain analyte on the concentration of water or the presence of other compounds in the sample gas. Especially for low proton affine analytes, e.g.
View Article and Find Full Text PDFWe present a high kinetic energy ion mobility spectrometer (HiKE-IMS) for quantitative gas analysis. Drift tube and reaction tube can be operated at reduced fields up to 110 Td. At such conditions the distribution of reactant ion water clusters is shifted toward smaller clusters.
View Article and Find Full Text PDFDrift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak.
View Article and Find Full Text PDF