Signal processing is a very useful field of study in the interpretation of signals in many everyday applications. In the case of applications with time-varying signals, one possibility is to consider them as graphs, so graph theory arises, which extends classical methods to the non-Euclidean domain. In addition, machine learning techniques have been widely used in pattern recognition activities in a wide variety of tasks, including health sciences.
View Article and Find Full Text PDFObjectives: An evaluation of the effectiveness of a new computational system proposed for automatic classification, developed based on a Siamese network combined with Convolutional Neural Networks (CNNs), is presented. It aims to identify endodontic technical errors using Cone Beam Computed Tomography (CBCT). The study also aims to compare the performance of the automatic classification system with that of dentists.
View Article and Find Full Text PDFImaging examinations are of remarkable importance for diagnostic support in Dentistry. Imaging techniques allow analysis of dental and maxillofacial tissues (e.g.
View Article and Find Full Text PDF