A unique family of decarboxylated betalains derived from dopamine has recently been discovered. Due to the lack of chemical standards, the existence and distribution of decarboxylated betalains in nature remain unknown. Traditional betalains contain L-dihydroxyphenylalanine as the starting point of the biosynthetic pathway and betalamic acid as a structural and functional unit, while the recently discovered betalains rely on dopamine.
View Article and Find Full Text PDFFlavonoids are potential nutraceutical compounds present in diary food. They are considered health-promoting compounds and promising drugs for different diseases, such as neurological and inflammatory diseases, diabetes and cancer. Therefore, toxicological and mechanistic studies should be done to assert the biological effects and identify the molecular targets of these compounds.
View Article and Find Full Text PDFThe biosynthesis of betalamic acid, the structural unit of pigments betalains, is performed by enzymes with 4,5-DOPA-extradiol-dioxygenase activity. These enzymes were believed to be limited to plants of the order Caryophyllales and to some fungi. However, the discovery of Gluconacetobacter diazotrophicus as the first betalain-forming bacterium opened a new field in the search for novel biological systems able to produce betalains.
View Article and Find Full Text PDFThe recent interest in plant pigment betalains as bioactive compounds and chemopreventive agents has led to the search for a reliable and scalable process to obtain them. The cloning of the novel and efficient enzyme 4,5-DOPA-extradiol dioxygenase from Gluconacetobacter diazotrophicus in an expression vector, and the subsequent heterologous expression in Escherichia coli cultures has led to the start-up of a biotechnological production system of individual pigments. The aim of this study was to search for the optimal conditions for the production of betalamic acid in microbial factories and the scaled-up obtention of the derived pigments.
View Article and Find Full Text PDF