Publications by authors named "Maria A Z Coelho"

Heavy crude oil reserves are characterized by their high viscosity and density, largely due to significant quantities of asphaltenes. The removal of asphaltene precipitates from oil industry installations is crucial, as they can contaminate catalysts and obstruct pipelines. Therefore, this study aimed to bio-transform heavy oil asphaltenes into smaller molecules using the yeast Yarrowia lipolytica, known for its ability to efficiently degrade hydrophobic substrates.

View Article and Find Full Text PDF
Article Synopsis
  • Yarrowia lipolytica is recognized for its high enzyme production and ability to grow in dense cultures, making it valuable in biotechnology.
  • The study explored the effects of eighteen deep eutectic solvents (DES) on the yeast's growth, finding most DES inhibited growth compared to a control medium, except for one specific DES combination.
  • Analysis of the enzyme hexokinase (YlHxk) revealed how different DES components interact at a molecular level, suggesting potential pathways for improving biotechnological applications while also hinting at ways to reduce research costs and time.
View Article and Find Full Text PDF

Biological recycling of PET waste has been extensively investigated recently to tackle plastic waste pollution, and ethylene glycol (EG) is one of the main building blocks recovered from this process. Wild-type Yarrowia lipolytica IMUFRJ 50682 can be a biocatalyst to biodepolymerize PET. Herein, we report its ability to perform oxidative biotransformation of EG into glycolic acid (GA): a higher value-added chemical with varied industrial applications.

View Article and Find Full Text PDF

Several microorganisms have been reported as capable of acting on poly(ethylene terephthalate) (PET) to some extent, such as , which is a yeast known to produce various hydrolases of industrial interest. The present work aims to evaluate PET depolymerization by using two different strategies. In the first one, biocatalysts were produced during solid-state fermentation (SSF-YL), extracted and subsequently used for the hydrolysis of PET and bis(2-hydroxyethyl terephthalate) (BHET), a key intermediate in PET hydrolysis.

View Article and Find Full Text PDF

Poly(ethylene terephthalate) (PET) is one of the main synthetic plastics produced worldwide. The extensive use of this polymer causes several problems due to its low degradability. In this scenario, biocatalysts dawn as an alternative to enhance PET recycling.

View Article and Find Full Text PDF

Soft drinks are food matrices propitious to the growth of acidophilic bacteria, yeasts, and filamentous fungi due to their pH, water activity, and the presence of nutrients. Off-flavor, clouding, and package stuffing are the only parameters producers have to detect spoilage when it is often too late for the brand's reputation. In this work, microbiological analyses were performed on non-alcoholic beverages of Brazilian and Bolivian brands.

View Article and Find Full Text PDF

Bioactive compounds can provide health benefits beyond the nutritional value and are originally present or added to food matrices. However, because they are part of the food matrices, most bioactive compounds remain in agroindustrial by-products. Agro-industrial by-products are generated in large quantities throughout the food production chain and can-when not properly treated-affect the environment, the profit, and the proper and nutritional distribution of food to people.

View Article and Find Full Text PDF

The environmental impact arising from poly(ethylene terephthalate) (PET) waste is notable worldwide. Enzymatic PET hydrolysis can provide chemicals that serve as intermediates for value-added product synthesis and savings in the resources. In the present work, some reaction parameters were evaluated on the hydrolysis of post-consumer PET (PC-PET) using a cutinase from Humicola insolens (HiC).

View Article and Find Full Text PDF

Since plastic pollution emerged as an urgent environmental problem, different biocatalysts have been tested for poly(ethylene terephthalate) (PET) hydrolysis. This work evaluated three different possible inducers for lipases and/or esterases, two natural sources of biopolymers (apple peels and commercial cork) and PET, as supplements in the solid-state fermentation of soybean bran by Yarrowia lipolytica. The obtained enzymatic extracts displaying different levels of lipase and esterase activities were then tested for PET depolymerization.

View Article and Find Full Text PDF

Accumulation of plastic wastes and their effects on the ecosystem have triggered an alarm regarding environmental damage, which explains the massive investigations over the past few years, aiming technological alternatives for their proper destination and valorization. In this context, biological degradation emerges as a green route for plastic processing and recycling in a circular economy approach. Some of the main polymers produced worldwide are poly(ethylene terephthalate) (PET), polyethylene (PE) and polypropylene (PP), which are among the most recalcitrant materials in the environment.

View Article and Find Full Text PDF

Massive plastics production has raised concerns about low recycling rates and disposal of these materials in nature, causing environmental and economic impacts. Poly(ethylene terephthalate) (PET) is one of main polymers used for manufacture of plastic packaging (e.g.

View Article and Find Full Text PDF

Biotechnology and bioengineering techniques have been widely used in the production of biofuels, chemicals, pharmaceuticals, and food additives, being considered a "green" form of production because they use renewable and nonpolluting energy sources. On the other hand, in the traditional processes of production, the target product obtained by biotechnological routes must undergo several stages of purification, which makes these processes more expensive. In the past few years, some works have focused on processes that integrate fermentation to the recovery and purification steps necessary to obtain the final product required.

View Article and Find Full Text PDF

The aim of this work is to develop an optimized enzymatic assisted extraction methodology to extract carotenoids and phenolic compounds from sunflower wastes (petals and florets) using natural hydrophobic green solvents. Several natural green hydrophobic solvents were used as well as natural hydrophobic eutectic solvents composed of d,l-menthol and different acids, with different hydrophobicity. The multi-enzyme complex Viscozyme was used to disrupt the cell wall of petals and disc florets.

View Article and Find Full Text PDF

Nitrogen-limiting condition is essential for citric acid production by Yarrowia lipolytica. Mitochondrial protein expression profiles of Y. lipolytica IMUFRJ 50,682 cells cultivated in biomass proliferation medium (YPG medium, yeast extract, peptone and glycerol) and citric acid production medium (CA medium) were analyzed to identify differences in expressed proteins in response to medium composition.

View Article and Find Full Text PDF

The aim of this research was to optimize the growth parameters (pH, ethanol tolerance, initial cell concentration and temperature) for and its tolerance to gastrointestinal conditions for probiotic alcoholic beverage development. Placket-Burman screening was used to select only statistically significant variables, and the polynomial mathematical model for yeast growth was obtained by central composite rotatable design. Confirmation experiments to determine the kinetic parameters for yeast growth were carried out by controlling the temperature and pH.

View Article and Find Full Text PDF

Yarrowia lipolytica lipase obtained by solid-state fermentation was characterized and applied in the synthesis of esters with commercial value in the food industry. The effect of different conditions on the hydrolysis activity of this biocatalyst was evaluated in the presence of metal ions, solvents, detergents, several pH and temperature parameters, and different substrates. Storage stability was also studied.

View Article and Find Full Text PDF

This study aimed to evaluate the use of a lyophilized fermented solid (named solid enzymatic preparation, SEP), with lipase activity, as a low-cost biocatalyst for esterification reactions of fatty acids present in acid raw materials for biodiesel synthesis. The SEP was obtained by solid-state fermentation (SSF) of soybean bran using the strain of IMUFRJ 50682 and contains the lipases secreted by this yeast. The esterification reaction of ethanol and the predominant fatty acids present in different acid oil sources for biodiesel production (oleic, linoleic, stearic and palmitic acids) was investigated.

View Article and Find Full Text PDF

Polyethylene glycol (PEG) is polymer that was used to replace NaCl (reference media) as an osmotic stress agent for the synthesis of erythritol by the osmophilic yeast Yarrowia lipolytica. Two strains, the wild-type strain IMUFRJ 50682 and the lab strain W29, were grown in the presence of PEG of different molecular weights. For strain IMUFRJ 50682, the erythritol titer was increased by 40% in the presence of PEG2000 as compared to the reference media (with NaCl).

View Article and Find Full Text PDF

Flaxseed (Linum usitatissimum) meal, the main byproduct of the flaxseed oil extraction process, is composed mainly of proteins, mucilage, and phenolic compounds. The extraction methods of phenolics either commonly employed the use of mixed solvents (dioxane/ethanol, water/acetone, water/methanol, and water/ethanol) or are done with the aid of alkaline, acid, or enzymatic hydrolysis. This work aimed at the study of optimal conditions for a clean process, using renewable solvents and enzymes, for the extraction of phenolics and proteins from flaxseed meal.

View Article and Find Full Text PDF

Commercial laccase formulation was immobilized on modified green coconut fiber silanized with 3-glycidoxypropyltrimethoxysilane, aiming to achieve a cheap and effective biocatalyst. Two different strategies were followed: one point (pH 7.0) and multipoint (pH 10.

View Article and Find Full Text PDF

Lipases represent one of the most reported groups of enzymes for the production of biofuels. They are used for the processing of glycerides and fatty acids for biodiesel (fatty acid alkyl esters) production. This paper presents the main topics of the enzyme-based production of biodiesel, from the feedstocks to the production of enzymes and their application in esterification and transesterification reactions.

View Article and Find Full Text PDF

Background, Aim, And Scope: Fishery wastewater treatment can be compromised due to seasonal production. The use of sequencing batch reactors is not completely successful, despite flexibility being one of the principal advantages. Most research on activated sludge is performed using synthetic wastewater to ensure a stable and constant feed.

View Article and Find Full Text PDF

Biosurfactants are surface-active compounds from biological sources, usually extracellular, produced by bacteria, yeast or fungi. Research on biological surfactant production has grown significantly due to the advantages they present over synthetic compounds such as biodegradability, low toxicity, diversity of applications and functionality under extreme conditions. Although the majority of microbial surfactants have been reported in bacteria, the pathogenic nature of some producers restricts the wide application of these compounds.

View Article and Find Full Text PDF

In order to improve biosurfactant production by Yarrowia lipolytica IMUFRJ 50682, a factorial design was carried out. A 2(4) full factorial design was used to investigate the effects of nitrogen sources (urea, ammonium sulfate, yeast extract, and peptone) on maximum variation of surface tension (Delta ST) and emulsification index (EI). The best results (67.

View Article and Find Full Text PDF