Background: Dysregulation of the complement system is involved in development of age-related macular degeneration (AMD). The complement cascade is regulated by membrane bound complement regulatory proteins (Cregs) on mononuclear leukocytes among others. This study aims to investigate systemic complement proteins and Cregs in AMD stages and their association with treatment response in neovascular AMD (nAMD).
View Article and Find Full Text PDFAging changes the responsiveness of our immune defense, and this decline in immune reactivity plays an important role in the increased susceptibility to infections that marks progressing age. Aging is also the most pronounced risk factor for development of age-related macular degeneration (AMD), a disease that is characterized by dysfunctional retinal pigment epithelial (RPE) cells and loss of central vision. We have previously shown that acute systemic viral infection has a large impact on the retina in young mice, leading to upregulation of chemokines in the RPE/choroid (RPE/c) and influx of CD8 T cells in the neuroretina.
View Article and Find Full Text PDFBlindness or vision loss due to neuroretinal and photoreceptor degeneration affects millions of individuals worldwide. In numerous neurodegenerative diseases, including age-related macular degeneration, dysregulated immune response-mediated retinal degeneration has been found to play a critical role in the disease pathogenesis. To better understand the pathogenic mechanisms underlying the retinal degeneration, we used a mouse model of systemic immune activation where we infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13.
View Article and Find Full Text PDFPurpose: Geographic atrophy (GA) secondary to age-related macular degeneration is a progressive retinal degenerative disease. Systemic chemokine receptors and known risk-associated single-nucleotide polymorphisms have been associated with GA pathogenesis. Because halting progression is pivotal for patients, we investigated the association of candidate chemokine receptors and progression rate (PR) of atrophic lesions in patients with GA.
View Article and Find Full Text PDFDuring recent years, evidence has emerged that immune privileged sites such as the CNS and the retina may be more integrated in the systemic response to infection than was previously believed. In line with this, it was recently shown that a systemic acute virus infection leads to infiltration of CD8 T cells in the brains of immunocompetent mice. In this study, we extend these findings to the neurological tissue of the eye, namely the retina.
View Article and Find Full Text PDFDefining correlates of T cell mediated protection is important in order to accelerate the development of efficient T cell based vaccines conferring long-term immunity. Extensive studies have provided important insight regarding the characteristics and functional properties of the effector and memory CD8 T cells induced by viral vector based vaccines. However, long-term protection has been difficult to achieve with T cell inducing vaccines, and the determinants underlying this loss in protection over time are still not fully defined.
View Article and Find Full Text PDFPurpose: The SQ tree sublingual immunotherapy (SLIT)-tablet containing allergen extracts with the major allergen Bet v 1 from birch pollen is currently being developed for the treatment of tree pollen-induced allergic rhinitis/conjunctivitis with or without asthma. The aim of this Phase II trial was to investigate the dose-related efficacy and safety of the SQ tree SLIT-tablet.
Methods: This study was a randomized, parallel-group, double-blind, placebo-controlled, multi-national trial conducted in Europe.
Purpose: The tree pollen sublingual immunotherapy (SLIT)-tablet (ALK, Denmark) is being developed for the treatment of tree pollen induced allergic rhinitis with or without conjunctivitis. The objective of this Phase I trial was to investigate the tolerability and acceptable dose range of the SQ tree SLIT-tablet in adults with allergic rhinoconjunctivitis.
Methods: The trial was a randomized, double-blind, placebo-controlled, dose escalation Phase I trial that included 70 adults (aged 19-61 years) with birch pollen-induced rhinoconjunctivitis with or without mild to moderate asthma.
Recently, we showed that combined intranasal and subcutaneous immunization with a non-replicating adenoviral vector expressing NP of influenza A, strain PR8, induced long-standing protection against a range of influenza A viruses. However, H-2 mice challenged with an influenza A strain mutated in the dominant NP epitope were not efficiently protected. To address this problem, we envision the use of a cocktail of adenovectors targeting different internal proteins of influenza A virus.
View Article and Find Full Text PDFBackground: Citrullination catalysed by peptidylarginine deiminases (PADs) plays an important pathogenic role in anti-citrullinated protein antibody (ACPA)-positive rheumatoid arthritis (RA) and, possibly, several other inflammatory diseases. Non-physiological reducing agents such as dithiothreitol (DTT) are normally added to the reaction buffer when determining PAD activity in vitro. We investigated the ability of reduced glutathione (GSH), the most abundant intracellular small-molecule thiol in vivo, to activate PADs.
View Article and Find Full Text PDFAs a result of the difficulties in making efficient vaccines against genetically unstable viruses such as HIV, it has been suggested that future vaccines should preferentially target subdominant epitopes, the idea being that this should allow a greater breadth of the induced T cell response and, hence, a greater efficiency in controlling escape variants. However, to our knowledge the evidence supporting this concept is limited at best. To improve upon this, we used the murine lymphocytic choriomeningitis virus model and adenoviral vectors to compare a vaccine expressing unmodified Ag to a vaccine expressing the same Ag without its immunodominant epitope.
View Article and Find Full Text PDFThe threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu nucleoprotein have previously been found to induce short-term protection in mice.
View Article and Find Full Text PDFThe attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge.
View Article and Find Full Text PDFJ Virol
December 2014
Unlabelled: Suppressors of cytokine signaling (SOCS) proteins are intracellular proteins that inhibit cytokine signaling in a variety of cell types. A number of viral infections have been associated with SOCS upregulation; however, not much is known about the mechanisms regulating SOCS expression during viral infection. In this study, we used two pathologically distinct intracerebral (i.
View Article and Find Full Text PDFWe have previously shown that for the majority of antigens, adenoviral vaccines expressing the target antigen fused to the MHC associated invariant chain (Ii) induce an accelerated, augmented, and prolonged transgene-specific CD8(+) T-cell response. Here we describe a new adenoviral vaccine vector approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8(+) T-cell response.
View Article and Find Full Text PDFAdenoviral vectors have long been forerunners in the development of effective CD8 T cell-based vaccines; therefore, it is imperative that we understand the factors controlling the induction of robust and long-lasting transgene-specific immune responses by these vectors. In this study, we investigated the organ sites, molecules, and cell subsets that play a critical role in the priming of transgene-specific CD8 T cells after vaccination with a replication-deficient adenoviral vector. Using a human adenovirus serotype 5 (Ad5) vector and genetically engineered mice, we found that CD8(+) and/or CD103(+) dendritic cells in the draining lymph node played a critical role in the priming of Ad5-induced CD8 T cell responses.
View Article and Find Full Text PDFThe use of replication-deficient adenoviruses as vehicles for transfer of foreign genes offers many advantages in a vaccine setting, eliciting strong cellular immune responses involving both CD8(+) and CD4(+) T cells. Further improving the immunogenicity, tethering of the inserted target Ag to MHC class II-associated invariant chain (Ii) greatly enhances both the presentation of most target Ags, as well as overall protection against viral infection, such as lymphocytic choriomeningitis virus (LCMV). The present study extends this vaccination concept to include protection against intracellular bacteria, using Listeria monocytogenes as a model organism.
View Article and Find Full Text PDFIt has been reported that adenovirus (Ad)-primed CD8 T cells may display a distinct and partially exhausted phenotype. Given the practical implications of this claim, we decided to analyze in detail the quality of Ad-primed CD8 T cells by directly comparing these cells to CD8 T cells induced through infection with lymphocytic choriomeningitis virus (LCMV). We found that localized immunization with intermediate doses of Ad vector induces a moderate number of functional CD8 T cells which qualitatively match those found in LCMV-infected mice.
View Article and Find Full Text PDFAdenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii).
View Article and Find Full Text PDFTherapeutic vaccination with replication deficient adenovirus expressing a viral antigen linked to invariant chain was recently found to markedly delay the growth of B16.F10 melanomas expressing the same antigen; however, complete regression of the tumors was never observed. Here we show that the delay in tumor growth can be converted to complete regression and long-term survival in 30-40% of the mice by a booster vaccination plus combinational treatment with agonistic anti-CD40 monoclonal antibodies (mAb) and anti-CTLA-4 mAb.
View Article and Find Full Text PDFSurfactant protein D (SP-D) is a pattern recognition molecule of the collectin family of C-type lectins. It is found in the airways and at mucosal surfaces. SP-D is part of the innate immune system where it neutralizes and leads to elimination of microorganisms.
View Article and Find Full Text PDF