This study introduces the translation and validation of the Prefrontal Symptoms Inventory (PSI) into English, aiming to provide an ecologically valid tool for assessing prefrontal symptoms in English-speaking populations in the United States. The prefrontal cortex (PFC) plays a crucial role in executive functions and other higher-order cognitive processes, with dysfunctions in this area associated with various cognitive, emotional and behavioural changes. Despite the existence of established tools like the Dysexecutive Questionnaire (DEX), the PSI addresses limitations found in the literature, presenting a novel ecologically valid tool for assessing prefrontal symptoms.
View Article and Find Full Text PDFCrustaceans are major constituents of aquatic ecosystems and, as such, changes in their behavior and the structure and function of their bodies can serve as indicators of alterations in their immediate environment, such as those associated with climate change and anthropogenic contamination. We have used bioinformatics and a de novo transcriptome assembly approach to identify potential targets for developing specific antibodies to serve as nervous system function markers for freshwater prawns of the Macrobrachium spp. Total RNA was extracted from brain ganglia of Macrobrachium carcinus freshwater prawns and Illumina Next Generation Sequencing was performed using an Eel Pond mRNA Seq Protocol to construct a de novo transcriptome.
View Article and Find Full Text PDFDetection and toxicity assessment of waterborne contaminants are crucial for protecting human health and the environment. Development of easy-to-implement, rapid and cost-effective tools to measure anthropogenic effects on watersheds are critical for responsible management, particularly in times of increasing development and urbanization. Traditionally, environmental toxicology has focused on limited endpoints, such as lethality and fertility, which are directly affecting population levels.
View Article and Find Full Text PDFUrbanization adjacent to rivers has increased in recent years and is considered a source of environmental contamination. The resulting increase in number of urban rivers in highly populated areas, such as the Caribbean island of Puerto Rico, has led to the appearance of synthetic as well as naturally occurring chemicals not previously observed nor regularly monitored in freshwater habitats. Some of these chemicals, such as heavy metals and plasticizers, have been shown to affect endocrine, respiratory, and nervous system function in animals and humans, even at relatively low concentrations.
View Article and Find Full Text PDFHere we report the characterization of an octopamine/tyramine (OA/TA or TyrR1) receptor (OA/TAMac) cloned from the freshwater prawn, Macrobrachium rosenbergii, an animal used in the study of agonistic social behavior. The invertebrate OA/TA receptors are seven trans-membrane domain G-protein coupled receptors that are related to vertebrate adrenergic receptors. Behavioral studies in arthropods indicate that octopaminergic signaling systems modulate fight or flight behaviors with octopamine and/or tyramine functioning in a similar way to the adrenalins in vertebrate systems.
View Article and Find Full Text PDFSpiders have considerable potential importance for their role as predators to some pests in agricultural systems. The composition of spiders in transgenic and conventional cotton at the Research Station of INTA Reconquista (Santa Fe) was studied during the 2005-2006 season. The experiment was a complete randomized block design with three replications and three treatments: transgenic Bt cotton (ALBt), conventional cotton without chemical control (ALCSC), and conventional cotton with chemical control (ALCCC).
View Article and Find Full Text PDFCryptococcosis is a fungal infection caused by yeast species of Cryptococcus genus, particularly Cryptococcus neoformans/Cryptococcus gattii species complex. The knowledge of the cryptococcosis casuistic in northeastern Argentina is scarce and there is no information about the molecular types circulating in this area. The aim of this study was to genotyping C.
View Article and Find Full Text PDFThere is ample evidence linking octopamine (OA) and tyramine (TA) to several neurophysiological functions in arthropods. In our laboratory we use the freshwater prawn Macrobrachium rosenbergii to study the neural basis of aggressive behavior. As a first step towards understanding the possible role of these amines and their receptors in the modulation of interactive behaviors, we have cloned a putative octopamine/tyramine receptor.
View Article and Find Full Text PDFThe freshwater prawn Macrobrachium rosenbergii is a tropical crustacean with characteristics similar to those of lobsters and crayfish. Adult males develop through three morphological types-small (SC), yellow (YC), and blue claws (BC)-with each representing a level in the dominance hierarchy of a group, BC males being the most dominant. We are interested in understanding the role played by neuropeptides in the mechanisms underlying aggressive behavior and the establishment of dominance hierarchies in this type of prawn.
View Article and Find Full Text PDFBiogenic amines are implicated in several mental disorders, many of which involve social interactions. Simple model systems, such as crustaceans, are often more amenable than vertebrates for studying mechanisms underlying behaviors. Although various cellular responses of biogenic amines have been characterized in crustaceans, the mechanisms linking these molecules to behavior remain largely unknown.
View Article and Find Full Text PDFSerotonin (5-HT) is involved in regulating important aspects of behavior and a variety of systemic physiological functions in both vertebrates and invertebrates. These functions are mediated through binding to 5-HT receptors, of which approximately 13 have been characterized in mammals. In crustaceans, important model systems for the study of the neural basis of behaviors, 5-HT is also linked with higher-order behaviors, associated with different 5-HT receptors that have been identified at the physiological and pharmacological levels.
View Article and Find Full Text PDFThe stomatogastric nervous system (STNS) is a premiere model for studying modulation of motor pattern generation. Whereas the cellular and network responses to monoamines have been particularly well characterized electrophysiologically, the transduction mechanisms that link the different monoaminergic signals to specific intracellular responses are presently unknown in this system. To begin to elucidate monoaminergic signal transduction in pyloric neurons, we used a bioinformatics approach to predict the existence of 18 monoamine receptors in arthropods, 9 of which have been previously cloned in Drosophila and other insects.
View Article and Find Full Text PDF