Publications by authors named "Maria A Roca-Ceballos"

Aims: According to Braak's hypothesis, it is plausible that Parkinson's disease (PD) originates in the enteric nervous system (ENS) and spreads to the brain through the vagus nerve. In this work, we studied whether inflammatory bowel diseases (IBDs) in humans can progress with the emergence of pathogenic α-synuclein (α-syn) in the gastrointestinal tract and midbrain dopaminergic neurons.

Methods: We have analysed the gut and the ventral midbrain from subjects previously diagnosed with IBD and form a DSS-based rat model of gut inflammation in terms of α-syn pathology.

View Article and Find Full Text PDF

Parkinson's disease is a highly prevalent neurological disorder for which there is currently no cure. Therefore, the knowledge of risk factors as well as the development of new putative molecular targets is mandatory. In this sense, peripheral inflammation, especially the originated in the colon, is emerging as a predisposing factor for suffering this disease.

View Article and Find Full Text PDF

Apoptotic caspases are thought to play critical roles in elimination of excessive and non-functional synapses and removal of extra cells during early developmental stages. Hence, an impairment of this process may thus constitute a basis for numerous neurological and psychiatric diseases. This view is especially relevant for dopamine due to its pleiotropic roles in motor control, motivation and reward processing.

View Article and Find Full Text PDF

In neurodegenerative diseases, microglia-mediated neuroinflammation and oxidative stress are central events. Recent genome-wide transcriptomic analyses of microglial cells under different disease conditions have uncovered a new subpopulation named disease-associated microglia (DAM). These studies have challenged the classical view of the microglia polarization state's proinflammatory M1 (classical activation) and immunosuppressive M2 (alternative activation).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease in which the formation of extracellular aggregates of amyloid beta (Aβ) peptide, fibrillary tangles of intraneuronal tau and microglial activation are major pathological hallmarks. One of the key molecules involved in microglial activation is galectin-3 (gal3), and we demonstrate here for the first time a key role of gal3 in AD pathology. Gal3 was highly upregulated in the brains of AD patients and 5xFAD (familial Alzheimer's disease) mice and found specifically expressed in microglia associated with Aβ plaques.

View Article and Find Full Text PDF

The impact of systemic inflammation in nigral dopaminergic cell loss remains unclear. Here, we have investigated the role of peripheral inflammation induced by systemic lipopolysaccharide (LPS) administration in the MPTP-based model of Parkinson's disease. Brain inflammation, microglia and astroglia activation, disruption of the blood-brain barrier (BBB) and integrity of the nigrostriatal dopaminergic system were evaluated in response to i.

View Article and Find Full Text PDF

A missense mutation in HERC1 provokes loss of cerebellar Purkinje cells, tremor, and unstable gait in tambaleante (tbl) mice. Recently, we have shown that before cerebellar degeneration takes place, the tbl mouse suffers from a reduction in the number of vesicles available for release at the neuromuscular junction (NMJ). The aim of the present work was to study to which extent the alteration in HERC1 may affect other cells in the nervous system and how this may influence the motor dysfunction observed in these mice.

View Article and Find Full Text PDF