Ultrathin molecular layers of Fe(II) -terpyridine oligomers allow the fabrication of large-area crossbar junctions by conventional electrode vapor deposition. The junctions are electrically stable for over 2.5 years and operate over a wide range of temperatures (150-360 K) and voltages (±3 V) due to the high cohesive energy and packing density of the oligomer layer.
View Article and Find Full Text PDFThe study of charge transport processes through organic molecules by using molecular junctions has generated great attention in the last few years, partially triggered by the possibility of developing molecular electronic devices to be implemented somehow into current silicon-based technology. As experimental tools, a large variety of conceptually and geometrically different metal-molecule(s)-metal junctions has been proposed. While the intrinsic conductivity of a molecule is still elusive, parameters crucial for molecular electronics have been extracted by using a variety of junctions.
View Article and Find Full Text PDFJunctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.
View Article and Find Full Text PDFThis paper describes the formation and electrical properties of a new Hg-based metal-molecules-metal junction that incorporates charged redox sites into the space between the electrodes. The junction is formed by bringing into contact two mercury-drop electrodes whose surfaces are covered by COO(-)-terminated self-assembled monolayers (SAMs) and immersed in a basic aqueous solution of Ru(NH(3))(6)Cl(3). The electrical behavior of the junction, which is contacted at its edges by aqueous electrolyte solution, has been characterized electrochemically.
View Article and Find Full Text PDFOne of the main goals of molecular electronics is to achieve electronic functions from devices consisting of tailored organic molecules connecting two metal electrodes. The fabrication of nanometre-scale spaced electrodes still results in expensive, and often scarcely reproducible, devices. On the other hand, the 'conductance' of long organic molecules--generally dominated by the tunnelling mechanism--is very poor.
View Article and Find Full Text PDFConductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.
View Article and Find Full Text PDFPhotochromic systems can convert light energy into mechanical energy, thus they can be used as building blocks for the fabrication of prototypes of molecular devices that are based on the photomechanical effect. Hitherto a controlled photochromic switch on surfaces has been achieved either on isolated chromophores or within assemblies of randomly arranged molecules. Here we show by scanning tunneling microscopy imaging the photochemical switching of a new terminally thiolated azobiphenyl rigid rod molecule.
View Article and Find Full Text PDFThis paper compares the structural and electrical characteristics of self-assembled monolayers (SAMs) of n-alkanethiolates, SCn (n = 10, 12, 14), on two types of silver substrates: one used as-deposited (AS-DEP) by an electron-beam evaporator, and one prepared using the method of template-stripping. Atomic force microscopy showed that the template-stripped (TS) silver surfaces were smoother and had larger grains than the AS-DEP surfaces, and reflectance-absorbance infrared spectroscopy showed that SAMs formed on TS substrates were more crystalline than SAMs formed on AS-DEP substrates. The range of current densities, J (A/cm2), measured through mercury-drop junctions incorporating a given SAM on AS-DEP silver was, on average, several orders of magnitude larger than the range of J measured through the same SAM on TS silver, and the AS-DEP junctions failed, on average, 3.
View Article and Find Full Text PDFWe have assembled two junctions that incorporate redox sites between Hg electrodes by different interactions. In the first junction, Hg-SAM-R//R-SAM-Hg, the redox site (R) are covalently linked to each electrode in self assembled monolayers (SAM-R). In the second junction, Hg-SAM//R//SAM-Hg, the redox sites dissolved in solution are trapped by electrostatic interaction at the SAM formed at the electrodes.
View Article and Find Full Text PDFFaraday Discuss
February 2004
Experimental data for electron exchange between two electrodes covered by electroactive films are presented and discussed in terms of the Gerischer model. A model Hamiltonian is proposed for such indirect electron exchange involving two intermediate species. Explicit model calculations are performed for the case in which the coupling between the two adsorbates is weak and determines the overall rate.
View Article and Find Full Text PDFAn electrical junction formed by mechanical contact between two self-assembled monolayers (SAMs)--a SAM formed from an dialkyl disulfide with a covalently linked tetracyanoquinodimethane group that is supported by silver (or gold) and a SAM formed from an alkanethiolate SAM that is supported by mercury-rectifies current. The precursor to the SAM on silver (or gold) was bis(20-(2-((2,5-cyclohexadiene-1,4-diylidene)dimalonitrile))decyl)) disulfide and that for the SAM on mercury was HS(CH(2))(n-1)CH(3) (n = 14, 16, 18). The electrical properties of the junctions were characterized by current-voltage measurements.
View Article and Find Full Text PDFA convenient experimental system is described, with which electron transport through structurally well-defined, 2-5 nm-thick, organic films can be examined. Two types of junction J have been studied in which self-assembled monolayers (SAMs, for example, SAM(1) formed on Ag from aliphatic and aromatic thiols, and SAM(2), formed on Hg from hexadecanethiol) are in contact through either van der Waals interactions or through covalent, hydrogen, or ionic bonds.
View Article and Find Full Text PDFThe formation of a supercomplex between the Ru(bpy)(CN)(4)(2-) (bpy = 2,2'-bipyridine) complex and the [32]ane-N(8)H(8)(8+) macrocycle (1) has been studied in water and in acetonitrile. In acetonitrile, supercomplex formation is accompanied by (i) large hypsochromic shifts in the absorption spectrum (color changes from deep violet to yellow) and in the emission spectrum, (ii) large anodic shifts in standard oxidation (0.73 V) and reduction (0.
View Article and Find Full Text PDF