Publications by authors named "Maria A Pronzato"

Alterations of redox homeostasis leads to a condition of resilience known as hormesis that is due to the activation of redox-sensitive pathways stimulating cell proliferation, growth, differentiation, and angiogenesis. Instead, supraphysiological production of reactive oxygen species (ROS) exceeds antioxidant defence and leads to oxidative distress. This condition induces damage to biomolecules and is responsible or co-responsible for the onset of several chronic pathologies.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are a limited cell population inside a tumor bulk characterized by high levels of glutathione (GSH), the most important antioxidant thiol of which cysteine is the limiting amino acid for GSH biosynthesis. In fact, CSCs over-express xCT, a cystine transporter stabilized on cell membrane through interaction with CD44, a stemness marker whose expression is modulated by protein kinase Cα (PKCα). Since many chemotherapeutic drugs, such as Etoposide, exert their cytotoxic action by increasing reactive oxygen species (ROS) production, the presence of high antioxidant defenses confers to CSCs a crucial role in chemoresistance.

View Article and Find Full Text PDF

We previously demonstrated that cyclic guanosine monophosphate (cGMP) stimulates amyloid precursor protein (APP) and beta-secretase (BACE1) approximation in neuronal endo-lysosomal compartments, thus boosting the production of amyloid-β (Aβ) peptides and enhancing synaptic plasticity and memory. Here, we further investigated the mechanism by which cGMP regulates the subcellular localization of APP and BACE1, finding that the cyclic nucleotide inhibits the activity of Rab5, a small GTPase associated with the plasma membrane and early endosomes. Accordingly, we also found that expression of a dominant-negative Rab5 mutant increases both APP-BACE1 approximation and Aβ extracellular levels, therefore mimicking the effects induced by cGMP.

View Article and Find Full Text PDF

Heme oxygenase 1 (HO-1) plays a pivotal role in preventing cell damage. Indeed, through the antioxidant, antiapoptotic and anti-inflammatory properties of its metabolic products, it favors cell adaptation against different stressors. However, HO-1 induction has also been related to the gain of resistance to therapy in different types of cancers and its involvement in cancer immune-escape has been hypothesized.

View Article and Find Full Text PDF

Heme oxygenase 1 (HO-1) up-regulation is recognized as a pivotal mechanism of cell adaptation to stress. Under control of different transcription factors but with a prominent role played by Nrf2, HO-1 induction is crucial also in nervous system response to damage. However, several lines of evidence have highlighted that HO-1 expression is associated to neuronal damage and neurodegeneration especially in Alzheimer's and Parkinson's diseases.

View Article and Find Full Text PDF

Heme oxygenase 1 (HO-1) is crucially involved in cell adaptation to oxidative stress and has been demonstrated to play an important role in cancer progression and resistance to therapies. We recently highlighted that undifferentiated neuroblastoma (NB) cells are prone to counteract oxidative stress through the induction of HO-1. Conversely, differentiated NB cells were more sensitive to oxidative stress since HO-1 was scarcely upregulated.

View Article and Find Full Text PDF

Cystic fibrosis is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and the predominant mutation is termed Phe508del (F508del). Therapy for F508del‑CFTR patients is based on the use of Orkambi®, a combination of VX809 and VX770. However, though Orkambi leads to an improvement in the lung function of patients, a progressive reduction in its efficacy has been observed.

View Article and Find Full Text PDF

Neuronal adaptation to oxidative stress is crucially important in order to prevent degenerative diseases. The role played by the Nrf2/HO-1 system in favoring cell survival of neuroblastoma (NB) cells exposed to hydrogen peroxide (HO) has been investigated using undifferentiated or all-trans retinoic acid (ATRA) differentiated SH-SY5Y cells. While undifferentiated cells were basically resistant to the oxidative stimulus, ATRA treatment progressively decreased cell viability in response to HO.

View Article and Find Full Text PDF
Article Synopsis
  • Long-term potentiation (LTP) and memory formation rely on the activation of cyclic nucleotides, specifically cGMP and cAMP.
  • Recent findings show that both cGMP and cAMP increase the production of amyloid-beta (Aβ) peptides, with cAMP promoting hippocampal LTP by enhancing amyloid precursor protein (APP) synthesis.
  • The study highlights cGMP's role in the trafficking of APP within cells, suggesting it aids in Aβ production by facilitating APP movement to the endolysosomal compartment without altering APP expression.
View Article and Find Full Text PDF

High levels of amyloid-β peptide (Aβ) have been related to Alzheimer's disease pathogenesis. However, in the healthy brain, low physiologically relevant concentrations of Aβ are necessary for long-term potentiation (LTP) and memory. Because cGMP plays a key role in these processes, here we investigated whether the cyclic nucleotide cGMP influences Aβ levels and function during LTP and memory.

View Article and Find Full Text PDF

The upregulation of heme oxygenase-1 (HO-1) is one of the most important mechanisms of cell adaptation to stress. Indeed, the redox sensitive transcription factor Nrf2 is the pivotal regulator of HO-1 induction. Through the antioxidant, antiapoptotic, and antinflammatory properties of its metabolic products, HO-1 plays a key role in healthy cells in maintaining redox homeostasis and in preventing carcinogenesis.

View Article and Find Full Text PDF

Memory loss characterizes several neurodegenerative disorders, including Alzheimer's disease (AD). Inhibition of type 4 phosphodiesterase (PDE4) and elevation of cyclic adenosine monophosphate (cAMP) has emerged as a promising therapeutic approach to treat cognitive deficits. However, PDE4 exists in several isoforms and pan inhibitors cannot be used in humans due to severe emesis.

View Article and Find Full Text PDF

Neuroblastoma, a paediatric malignant tumor, is initially sensitive to etoposide, a drug to which many patients develop chemoresistance. In order to investigate the molecular mechanisms responsible for etoposide chemoresistance, HTLA-230, a human MYCN-amplified neuroblastoma cell line, was chronically treated with etoposide at a concentration that in vitro mimics the clinically-used dose. The selected cells (HTLA-Chr) acquire multi-drug resistance (MDR), becoming less sensitive than parental cells to high doses of etoposide or doxorubicin.

View Article and Find Full Text PDF

Phosphodiesterase type 4D (PDE4D) has been indicated as a promising target for treating neurodegenerative pathologies such as Alzheimer's Disease (AD). By preventing cAMP hydrolysis, PDE4 inhibitors (PDE4Is) increase the cAMP response element-binding protein (CREB) phosphorylation, synaptic plasticity and long-term memory formation. Pharmacological and behavioral studies on our hit GEBR-7b demonstrated that selective PDE4DIs could improve memory without causing emesis and sedation.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis.

View Article and Find Full Text PDF

Macrophages play a crucial role in atherosclerosis progression. Classically activated M1 macrophages have been found in rupture-prone atherosclerotic plaques whereas alternatively activated macrophages, M2, localize in stable plaque. Macrophage accumulation of cholesterol and of its oxidized derivatives (oxysterols) leads to the formation of foam cells, a hallmark of atherosclerotic lesions.

View Article and Find Full Text PDF

Hyperglycemia and diabetes are associated with endothelial cell dysfunction arising from enhanced oxidative injury, leading to the progression of diabetic vascular pathologies. The redox-sensitive transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a master regulator of antioxidant genes, such as heme oxygenase-1 (HO-1), involved in cellular defenses against oxidative stress. We have investigated the pathways involved in high glucose-induced activation of HO-1 in endothelial cells and examined the molecular mechanisms underlying cytoprotection.

View Article and Find Full Text PDF

For some decades, amyloid β (Aβ) has only been considered as a cytotoxic peptide, putative cause and marker of Alzheimer's disease (AD). Today, however, a considerable amount of evidence goes against the classical amyloid hypothesis and illustrates a new picture in which the Aβ loss of function, rather than its accumulation, has a pathogenic role in AD. In this concise review, we summarize some highlights of a collection of research pointing to the physiological function of Aβ and its role in the mechanisms of memory formation.

View Article and Find Full Text PDF

A new series of selective PDE4D inhibitors has been designed and synthesized by replacing 3-methoxy group with 3-difluoromethoxy isoster moiety in our previously reported cathecolic structures. All compounds showed a good PDE4D3 inhibitory activity, most of them being inactive toward other PDE4 isoforms (PDE4A4, PDE4B2 and PDE4C2). Compound 3b, chosen among the synthesized compounds as the most promising in terms of inhibitory activity, selectivity and safety, showed an improved pharmacokinetic profile compared to its non fluorinated analogue.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive and age-related neurodegenerative disorder affecting brain cells and is the most common form of "dementia", because of the cognitive detriment which takes place. Neuronal disruption represents its major feature, due to the cytosolic accumulation of amyloid β-peptide (Aβ) which leads to senile plaques formation and intracellular neurofibrillary tangles. Many studies have focused on the design and therapeutic use of new molecules able to inhibit Aβ aggregation.

View Article and Find Full Text PDF

Cyclic adenosine monophosphate (cAMP) regulates long-term potentiation (LTP) and ameliorates memory in healthy and diseased brain. Increasing evidence shows that, under physiological conditions, low concentrations of amyloid β (Aβ) are necessary for LTP expression and memory formation. Here, we report that cAMP controls amyloid precursor protein (APP) translation and Aβ levels, and that the modulatory effects of cAMP on LTP occur through the stimulation of APP synthesis and Aβ production.

View Article and Find Full Text PDF

The presence of waste in the environment has frequently been indicated as a significant risk to human health. Therefore, landfill sites and the disposal of urban solid and non-hazardous waste by incineration are subject to much environmental monitoring, in addition to the regulations already in place. However, little action has been taken, and consequently no specific legislation exists, in relation to the assessment of the real biological risk of various substances, including chemical mixtures and ashes, derived from the incineration processes.

View Article and Find Full Text PDF

The aggregation of amyloid-β (Aβ) peptides plays a crucial role in the onset and progression of Alzheimer's disease. Monomeric form of Aβ, indeed, could exert a physiological role. Considering the anti-oligomerization property of all-trans retinoic acid (ATRA), the involvement of monomeric Aβ1-42 in ATRA-induced neuronal differentiation has been investigated.

View Article and Find Full Text PDF

High-risk neuroblastoma (NB) is characterized by the development of chemoresistance, and bortezomib (BTZ), a selective inhibitor of proteasome, has been proposed in order to overcome drug resistance. Considering the involvement of the nuclear factor-erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in the antioxidant and detoxifying ability of cancer cells, in this study we have investigated their role in differently aggressive NB cell lines treated with BTZ, focusing on the modulation of HO-1 to improve sensitivity to therapy. We have shown that MYCN amplified HTLA-230 cells were slightly sensitive to BTZ treatment, due to the activation of Nrf2 that led to an impressive up-regulation of HO-1.

View Article and Find Full Text PDF

Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and disturbances in GSH homeostasis are involved in the etiology and progression of many human diseases including cancer. While GSH deficiency, or a decrease in the GSH/glutathione disulphide (GSSG) ratio, leads to an increased susceptibility to oxidative stress implicated in the progression of cancer, elevated GSH levels increase the antioxidant capacity and the resistance to oxidative stress as observed in many cancer cells. The present review highlights the role of GSH and related cytoprotective effects in the susceptibility to carcinogenesis and in the sensitivity of tumors to the cytotoxic effects of anticancer agents.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3cv4aon3bj2snf2u6jkf3h953ka2iip9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once