Publications by authors named "Maria A Nikolaeva"

Norepinephrine (NE) is released in excess into the extracellular space during oxygen-glucose deprivation (OGD) in brain, increasing neuronal metabolism and aggravating glutamate excitoxicity. We used isolated rat optic nerve and spinal cord dorsal columns to determine whether the noradrenergic system influences axonal damage in white matter. Tissue was studied electrophysiologically by recording the compound action potential (CAP) before and after exposure to 60 min of OGD at 36 degrees C.

View Article and Find Full Text PDF

The contribution of intracellular stores to axonal Ca2+ overload during chemical ischemia in vitro was examined by confocal microscopy. Ca2+ accumulation was measured by fluo-4 dextran (low-affinity dye, KD approximately 4 microM) or by Oregon Green 488 BAPTA-1 dextran (highaffinity dye, KD approximately 450 nM). Axonal Na+ was measured using CoroNa Green.

View Article and Find Full Text PDF

Hypoxic/ischemic and traumatic injury to central nervous system myelinated axons is heavily dependent on accumulation of Ca ions in the axoplasm, itself promoted by Na influx from the extracellular space. Given the high density of nodal Na channels, we hypothesized that nodes of Ranvier might be particularly vulnerable to Ca overload and subsequent damage, as this is the expected locus of maximal Na influx. Adult rat optic nerves were exposed to in vitro anoxia and analyzed immunohistochemically for the presence of spectrin breakdown.

View Article and Find Full Text PDF

The mechanisms of Ca(2+) release from intracellular stores in CNS white matter remain undefined. In rat dorsal columns, electrophysiological recordings showed that in vitro ischemia caused severe injury, which persisted after removal of extracellular Ca(2+); Ca(2+) imaging confirmed that an axoplasmic Ca(2+) rise persisted in Ca(2+)-free perfusate. However, depletion of Ca(2+) stores or reduction of ischemic depolarization (low Na(+), TTX) were protective, but only in Ca(2+)-free bath.

View Article and Find Full Text PDF