Metalloporphyrins with open d-shell ions can drive biochemical energy cycles. However, their utilization in photoconversion is hampered by rapid deactivation. Mapping the relaxation pathways is essential for elaborating strategies that can favorably alter the charge dynamics through chemical design and photoexcitation conditions.
View Article and Find Full Text PDFOligonuclear complexes of d-d transition metal ion centers that undergo spin-switching have long been developed for their practical role in molecular electronics. Recently, they also have appeared as promising photochemical reactants demonstrating improved stability. However, the lack of knowledge about their photophysical properties in the solution phase compared to mononuclear complexes is currently hampering their inclusion into advanced light-driven reactions.
View Article and Find Full Text PDFAn atomistic understanding of the photoinduced spin-state switching (PSS) within polynuclear systems of d-d transition metal ion complexes is required for their rational integration into light-driven reactions of chemical and biological interest. However, in contrast to mononuclear systems, the multidimensional dynamics of the PSS in solvated molecular arrays have not yet been elucidated due to the expected complications associated with the connectivity between the metal centers and the strong interactions with the surroundings. In this work, the PSS in a solvated triiron(II) metallogrid complex is characterized using transient optical absorption and X-ray emission spectroscopies on the femtosecond time scale.
View Article and Find Full Text PDF