Publications by authors named "Maria A Maggi"

The pathogenesis of Inflammatory Bowel Disease (IBD) involves complex mechanisms, including immune dysregulation, gut microbiota imbalances, oxidative stress, and defects in the gastrointestinal mucosal barrier. Current treatments for IBD often have significant limitations and adverse side effects, prompting a search for alternative therapeutic strategies. Natural products with anti-inflammatory and antioxidant properties have demonstrated potential for IBD management.

View Article and Find Full Text PDF

In this study, we explored the use of lipid mesophases (LMPs) as a biocompatible and biodegradable material for sustained drug delivery. Our hypothesis centered on leveraging the high surface-to-volume ratio of LMP-based beads to enhance strength, stability, and surface interaction compared to the LMP bulk gel. To modulate drug release, we introduced antioxidant vitamin E into the beads, influencing mesophase topologies and controlling drug diffusion coefficients.

View Article and Find Full Text PDF

L. is largely cultivated because it is the source of saffron, a well-appreciated and valued spice, not only for its culinary use but also because of its significant biological activities. Stigmas are the main product obtained from flowers, but in addition, tepals, largely considered a waste product, represent a big source of flavonoids and anthocyanins.

View Article and Find Full Text PDF

Liposomes are promising drug carriers for a wide range of central nervous system disorders, such as Parkinson's disease (PD), since they can protect active substances from degradation and could be administered intranasally, ensuring a direct access to the brain. Levodopa (LD), the drug commonly used to treat PD, spontaneously oxidizes in aqueous solutions and thus needs to be stabilized. Our investigation focuses on the preparation and the physico-chemical characterization of mixed liposomes to vehiculate LD and two natural substances (L-ascorbic acid and quercetin) that can prevent its oxidation and contribute to the treatment of Parkinson's disease.

View Article and Find Full Text PDF

A comparative quantitative structure-retention relationship (QSRR) study was carried out to predict the retention time of polycyclic aromatic hydrocarbons (PAHs) using molecular descriptors. The molecular descriptors were generated by the software Dragon and employed to build QSRR models. The effect of chromatographic parameters, such as flow rate, temperature, and gradient time, was also considered.

View Article and Find Full Text PDF
Article Synopsis
  • Headspace Solid-Phase Microextraction (HS-SPME) combined with Gas Chromatography-Mass Spectrometry (GC-MS) was used to analyze the aroma compounds in Trebbiano d'Abruzzo and Pecorino white wines from Abruzzo, Italy.
  • Optimization of extraction conditions was performed using Design of Experiments and Response Surface Methodology, focusing on factors like sorbent type, exposure time, temperature, and salt concentration to enhance extraction efficiency.
  • The PDMS/CAR/DVB sorbent effectively extracted around 70 compounds, enabling comparisons between the two wine varieties and supporting varietal discrimination through data-fusion methods.
View Article and Find Full Text PDF

Saffron is a spice obtained from the drying process of the stigmas of the flower Crocus sativus Linnaeus. It is well known that the organoleptic characteristics of this spice are closely linked to the production area and harvesting year. The present work aims to evaluate whether saffron samples produced in different years and origins present sensibly different crocin profiles.

View Article and Find Full Text PDF

Soilless cultivation of saffron () in a controlled environment represents an interesting alternative to field cultivation, in order to obtain a standardized high-quality product and to optimize yields. In particular, pharma-grade saffron is fundamental for therapeutic applications of this spice, whose efficacy has been demonstrated in the treatment of macular diseases, such as Age-related Macular Degeneration (AMD). In this work, a hydroponic cultivation system was developed, specifically designed to meet the needs of plant.

View Article and Find Full Text PDF

Saffron is an ancient spice largely used in traditional medicine. It has been found to be effective in treatment of retinal neurodegenerative diseases like age-related macular degeneration and Stargardt. In the present manuscript, it is shown that saffron's neuroprotective power is strongly related to the bioactivity of all its chemical components.

View Article and Find Full Text PDF

Clean water is vital for healthy ecosystems, for human life and, in a broader sense, it is directly linked to our socio-economic development. Nevertheless, climate change, pollution and increasing world population will likely make clean water scarcer in the near future. Consequently, it becomes imperative to develop novel materials and more efficient ways of treating waste and contaminated water.

View Article and Find Full Text PDF

In this work, pristine graphene oxide and its thermally reduced derivatives, rGO, were tested for the removal of triazines (atraton, prometryn, and atrazine) from water. The reduction process was optimized by means of design of experiments (DOE) coupled with response surface methodology (RSM), relying on the adsorption efficiency of the material. The optimal reduction conditions were calculated at a temperature of 110 °C maintained for 24 h; the mildest and simplest reduction protocol was chosen, as it allows in-air heat treatment with a common laboratory oven.

View Article and Find Full Text PDF

L. belongs to the Iridaceae family and it is commonly known as saffron. The different cultures together with the geoclimatic characteristics of the territory determine a different chemical composition that characterizes the final product.

View Article and Find Full Text PDF

An inductively coupled plasma-optical emission spectrometry (ICP OES) method was optimized and applied for determining the concentration of 14 elements (Ba, Ca, Co, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Sr, V, and Zn) in three representative white wines of the Abruzzo region (Italy). In order to optimise an ICP OES method a three level factorial design for three variables was used. The intensity of the emission lines for analytes was simultaneously maximised by using Derringer's desirability function.

View Article and Find Full Text PDF

Phenoxy acid herbicides are used worldwide and are potential contaminants of drinking water. Reversed phase high-performance liquid chromatography (RP-HPLC) is commonly used to monitor phenoxy acid herbicides in water samples. RP-HPLC retention of phenoxy acids is affected by both mobile phase composition and pH, but the synergic effect of these two factors, which is also dependent on the structure and pKa of solutes, cannot be easily predicted.

View Article and Find Full Text PDF

Sixty-five samples of red garlic (Allium sativum L.) coming from four different production territories of Italy were analysed by means of inductively coupled plasma optical emission spectrometry. The garlic samples were discriminated according to the geographical origin using the content of seven elements (Ba, Ca, Fe, Mg, Mn, Na and Sr).

View Article and Find Full Text PDF

Ultra-high performance liquid chromatography (UHPLC) coupled with diode array detection (DAD) was applied to improve separation and detection of mono- and bis-glucosyl esters of crocetin (crocins), the main red-colored constituents of saffron ( L.), and other polar components. Response surface methodology (RSM) was used to optimise the chromatographic resolution on the Kinetex C18 (Phenomenex) column taking into account of the combined effect of the column temperature, the eluent flow rate and the slope of a linear eluent concentration gradient.

View Article and Find Full Text PDF

Multi-walled carbon nanotubes (MWCNTs), because of their small size and large available surface area, are potentially efficient sorbents for the extraction of water solutes. Dispersion of MWCNTs in aqueous medium is suitable to adsorb organic contaminants from small sample volumes, but, the recovery of the suspended sorbent for successive re-use represents a critical step, which makes this method inapplicable in large-scale water-treatment technologies. To overcome this problem, we proposed here MWCNTs grown on silicon supports and investigated on a small-volume scale their adsorption properties towards triazine herbicides dissolved in water.

View Article and Find Full Text PDF

Response surface methodology (RSM) was applied to optimise the extraction of curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) from turmeric using ethyl lactate (EL), ethanol and water under mild conditions (magnetic stirring at room temperature). An augmented simplex-centroid mixture design was used to monitor the dependence of the extraction efficiency from the proportions of the three solvents in the extraction medium. HPLC was used to establish the content of curcuminoids in turmeric and in the extracts.

View Article and Find Full Text PDF

Response surface methodology, coupled to a full factorial three-level experimental design, was applied to investigate the combined influence of pH (between 7.0 and 8.6) and composition of methanol-water mixtures (between 30 and 70% v/v of methanol content) on the stability of curcumin and its analogues demethoxycurcumin and bisdemethoxycurcumin.

View Article and Find Full Text PDF

We attempted geographical classification of saffron using UV-visible spectroscopy, conventionally adopted for quality grading according to the ISO Normative 3632. We investigated 81 saffron samples produced in L'Aquila, Città della Pieve, Cascia, and Sardinia (Italy) and commercial products purchased in various supermarkets. Exploratory principal component analysis applied to the UV-vis spectra of saffron aqueous extracts revealed a clear differentiation of the samples belonging to different quality categories, but a poor separation according to the geographical origin of the spices.

View Article and Find Full Text PDF

One hundred and forty-four Italian saffron samples produced in the years from 2009 to 2015 in five distinct areas located in four different regions, Abruzzo (L'Aquila), Tuscany (Florence), Umbria (Cascia and Città della Pieve) and Sardinia, have been analysed by high-performance liquid chromatography with diode array detection. Intensities of the chromatographic peaks attributed to crocins, safranal, picrocrocin and its derivatives and flavonoids were considered as variables in linear discriminant analysis to attempt geographical classification. The results revealed that spices produced at different sites of the Italian territory can be discriminated with good accuracy.

View Article and Find Full Text PDF

A procedure based on microextraction by packed sorbent (MEPS) followed by ultra-high performance liquid chromatography (UHPLC) with photodiode array (PDA) detection has been developed for the analysis of seven selected non steroidal anti-inflammatory drugs (NSAIDs) in human dialysates. The influence on MEPS efficiency of pH of the sample, pH of the washing solvent and methanol content in the hydro-alcoholic elution mixture has been investigated by response surface methodology based on a Box-Behnken design of experiments. Among the above factors, pH of sample is the variable that mostly influences MEPS recovery.

View Article and Find Full Text PDF

A response surface methodology (RSM) approach is applied to optimise the temperature-programme gas-chromatographic separation of 16 organochloride pesticides, including 12 compounds identified as highly toxic chemicals by the Stockholm Convention on Persistent Organic Pollutants. A three-parameter relationship describing both linear and curve temperature programmes is derived adapting a model previously used in literature to describe concentration gradients in liquid chromatography with binary eluents. To investigate the influence of the three temperature profile descriptors (the starting temperature, the gradient duration and a shape parameter), a three-level full-factorial design of experiments is used to identify suitable combinations of the above variables spanning over a useful domain.

View Article and Find Full Text PDF

Development of chromatographic analyses of synthetic cannabinoids is complicated by the lack of commercial reference standards, especially for new analogues introduced in the clandestine market to bypass legal controls and for their metabolites. In the present work, we explore the possibility of predicting the retention behaviour of the cannabimimetic aminoalkilindoles and their urinary metabolites in high-performance liquid-chromatography using a quantitative structure-retention relationship (QSRR) generated by multilinear regression. To represent the structure of the 43 investigated analytes, 617 computational molecular descriptors are subjected to genetic algorithm variable selection aimed at identifying a small but informative subset.

View Article and Find Full Text PDF

A multilayer artificial neural network (ANN) is used to model the reversed-phase liquid chromatography retention times of 16 selected compounds, including purines, pyrimidines and nucleosides. The analysed data, taken from literature, were collected in acetonitrile-water eluents under the application of 16 different multilinear gradients. The parameters describing the gradient profile together with solute descriptors are considered as the independent variables of an ANN-based model providing the retention time as response.

View Article and Find Full Text PDF