Competitive bacteria like the human pathogen Pseudomonas aeruginosa can acquire iron from different iron carriers, which are usually internalized via outer membrane TonB-dependent receptors (TBDRs). Production of TBDRs is promoted by the presence of the substrate. This regulation often entails a signal transfer pathway known as cell-surface signaling (CSS) that involves the TBDR itself that also functions as transducer (and is thus referred to as TBDT), a cytoplasmic membrane-bound anti-σ factor, and an extracytoplasmic function σ (σECF) factor.
View Article and Find Full Text PDFis a pathogen capable of colonizing virtually every human tissue. The host colonization competence and versatility of this pathogen are powered by a wide array of virulence factors necessary in different steps of the infection process. This includes factors involved in bacterial motility and attachment, biofilm formation, the production and secretion of extracellular invasive enzymes and exotoxins, the production of toxic secondary metabolites, and the acquisition of iron.
View Article and Find Full Text PDFCell-surface signaling (CSS) is a signal transfer system of Gram-negative bacteria that produces the activation of an extracytoplasmic function σ factor (σ) in the cytosol in response to an extracellular signal. Activation requires the regulated and sequential proteolysis of the σ-associated anti-σ factor, and the function of the Prc and RseP proteases. In this work, we have identified another protease that modulates CSS activity, namely the periplasmic carboxyl-terminal processing protease CtpA.
View Article and Find Full Text PDFThe type VI secretion system (T6SS) is an antimicrobial molecular weapon that is widespread in Proteobacteria and offers competitive advantages to T6SS-positive micro-organisms. Three T6SSs have recently been described in KT2440 and it has been shown that one, K1-T6SS, is used to outcompete a wide range of phytopathogens, protecting plants from pathogen infections. Given the relevance of this system as a powerful and innovative mechanism of biological control, it is critical to understand the processes that govern its expression.
View Article and Find Full Text PDFPseudomonas aeruginosa causes a wide array of life-threatening acute and chronic infections in humans. This opportunistic pathogen is metabolically highly versatile and harbors multiple virulence factors that allow infection of essentially any organ of the human body. The high capacity of this bacterium to acquire iron facilitates its versatility and is considered one of the P.
View Article and Find Full Text PDFFront Mol Biosci
October 2020
For bacteria to flourish in different niches, they need to sense signals from the environment and translate these into appropriate responses. Most bacterial signal transduction systems involve proteins that trigger the required response through the modification of gene transcription. These proteins are often produced in an inactive state that prevents their interaction with the RNA polymerase and/or the DNA in the absence of the inducing signal.
View Article and Find Full Text PDFThe extracytoplasmic function sigma factor σ of the human pathogen Pseudomonas aeruginosa promotes transcription of potential virulence determinants, including secretion systems and secreted proteins. Its activity is modulated by the VreR anti-σ factor that inhibits the binding of σ to the RNA polymerase in the absence of a (still unknown) inducing signal. The vreI-vreR genes are expressed under inorganic phosphate (Pi) starvation, a physiological condition often encountered in the host that increases P.
View Article and Find Full Text PDFPathogens have developed several strategies to obtain iron during infection, including the use of iron-containing molecules from the host. Haem accounts for the vast majority of the iron pool in vertebrates and thus represents an important source of iron for pathogens. Using a proteomic approach, we have identified in this work a previously uncharacterized system, which we name Hxu, that together with the known Has and Phu systems, is used by the human pathogen Pseudomonas aeruginosa to respond to haem.
View Article and Find Full Text PDFPseudomonas bacteria are widespread and are found in soil and water, as well as pathogens of both plants and animals. The ability of Pseudomonas to colonize many different environments is facilitated by the multiple signaling systems these bacteria contain that allow Pseudomonas to adapt to changing circumstances by generating specific responses. Among others, signaling through extracytoplasmic function σ (σ ) factors is extensively present in Pseudomonas.
View Article and Find Full Text PDFThe type VI secretion system (T6SS) is a bacterial nanomachine used to inject effectors into prokaryotic or eukaryotic cells and is thus involved in both host manipulation and interbacterial competition. The T6SS is widespread among Gram-negative bacteria, mostly within the Proteobacterium Phylum. This secretion system is commonly found in commensal and pathogenic plant-associated bacteria.
View Article and Find Full Text PDFCell-surface signaling (CSS) is a signal transfer system that allows Gram-negative bacteria to detect environmental signals and generate a cytosolic response. These systems are composed of an outer membrane receptor that senses the inducing signal, an extracytoplasmic function sigma factor (σ) that targets the cytosolic response by modifying gene expression and a cytoplasmic membrane anti-sigma factor that keeps the σ in an inactive state in the absence of the signal and transduces its presence from the outer membrane to the cytosol. Although CSS systems regulate bacterial processes as crucial as stress response, iron scavenging and virulence, the exact mechanisms that drive CSS are still not completely understood.
View Article and Find Full Text PDFBacterial type VI secretion systems (T6SSs) are molecular weapons designed to deliver toxic effectors into prey cells. These nanomachines have an important role in inter-bacterial competition and provide advantages to T6SS active strains in polymicrobial environments. Here we analyze the genome of the biocontrol agent Pseudomonas putida KT2440 and identify three T6SS gene clusters (K1-, K2- and K3-T6SS).
View Article and Find Full Text PDFGene regulation in bacteria is primarily controlled at the level of transcription initiation by modifying the affinity of the RNA polymerase (RNAP) for the promoter. This control often occurs through the substitution of the RNAP sigma (σ) subunit. Next to the primary σ factor, most bacteria contain a variable number of alternative σ factors of which the extracytoplasmic function group (σ(ECF)) is predominant.
View Article and Find Full Text PDFAs the interface between plant roots and soil, the rhizosphere is a complex environment where nutrients released by the plant promote microbial growth. Increasing evidences indicate that the plant also exerts a selective pressure on microbial populations in the rhizosphere, favouring colonization by certain groups. In this work, we have designed an experimental setup to begin analysing the evolution of a specific bacterial population in the rhizosphere, using Pseudomonas putida KT2440 as model organism.
View Article and Find Full Text PDFPseudomonas putida strains are ubiquitous in soil and water but have also been reported as opportunistic human pathogens capable of causing nosocomial infections. In this study we describe the multilocus sequence typing of four P. putida strains (HB13667, HB8234, HB4184, and HB3267) isolated from in-patients at the Besançon Hospital (France).
View Article and Find Full Text PDFThe Fox system of Pseudomonas aeruginosa is a cell-surface signaling (CSS) pathway employed by the bacterium to sense and respond to the presence of the heterologous siderophore ferrioxamine in the environment. This regulatory pathway controls the transcription of the foxA ferrioxamine receptor gene through the extracytoplasmic function sigma factor σ(FoxI). In the absence of ferrioxamine, the activity of σ(FoxI) is inhibited by the transmembrane anti-sigma factor FoxR.
View Article and Find Full Text PDFCell-surface signalling (CSS) enables Gram-negative bacteria to transduce an environmental signal into a cytosolic response. This regulatory cascade involves an outer membrane receptor that transmits the signal to an anti-sigma factor in the cytoplasmic membrane, allowing the activation of an extracytoplasmic function (ECF) sigma factor. Recent studies have demonstrated that RseP-mediated proteolysis of the anti-sigma factors is key to σ(ECF) activation.
View Article and Find Full Text PDFMembrane-spanning signaling pathways enable bacteria to alter gene expression in response to extracytoplasmic stimuli. Many such pathways are cell-surface signaling (CSS) systems, which are tripartite molecular devices that allow Gram-negative bacteria to transduce an extracellular stimulus into a coordinated transcriptional response. Typically, CSS systems are composed of the following: (1) an outer membrane receptor, which senses the extracellular stimulus; (2) a cytoplasmic membrane-spanning protein involved in signal transduction from the periplasm to the cytoplasm; and (3) an extracytoplasmic function (ECF) sigma factor that initiates expression of the stimulus-responsive gene(s).
View Article and Find Full Text PDFIn the last years, the zebrafish (Danio rerio) has become an important vertebrate animal model to study host-pathogen interactions, especially in its embryonic stage. The presence of a fully developed innate immune system in the first days of embryogenesis, the facility of obtaining and manipulating large numbers of embryos, the optical transparency of the embryos that allow the direct visualization of bacterial infections, a wide range of genetic tools, and extensive mutant resources and collections of transgenic reporter lines are important advantages of the zebrafish-embryo model. Pseudomonas aeruginosa is able to lethally infect zebrafish embryos when the amount of cells injected exceeds the phagocytic capacity of the embryo.
View Article and Find Full Text PDFExtracytoplasmic function (ECF) sigma factors play a key role in the regulation of vital functions in the bacterial response to the environment. In Gram-negative bacteria, activity of these sigma factors is often controlled by cell-surface signalling (CSS), a regulatory system that also involves an outer membrane receptor and a transmembrane anti-sigma factor. To get more insight into the molecular mechanism behind CSS regulation, we have focused on the unique Iut system of Pseudomonas putida.
View Article and Find Full Text PDFThe cell-surface signalling (CSS) system represents an important regulatory mechanism by which Gram-negative bacteria respond to the environment. Gene regulation by CSS systems is particularly present and important in the opportunistic human pathogen Pseudomonas aeruginosa. In this bacterium, these mechanisms regulate mainly the uptake of iron, but also virulence functions.
View Article and Find Full Text PDFNext to the two-component and quorum sensing systems, cell-surface signaling (CSS) has been recently identified as an important regulatory system in Pseudomonas aeruginosa. CSS systems sense signals from outside the cell and transmit them into the cytoplasm. They generally consist of a TonB-dependent outer membrane receptor, a sigma factor regulator (or anti-sigma factor) in the cytoplasmic membrane, and an extracytoplasmic function (ECF) sigma factor.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.