Publications by authors named "Maria A Gomez-Ferreria"

Cep192 is a centrosomal protein that contributes to the formation and function of the mitotic spindle in mammalian cells. Cep192's mitotic activities stem largely from its role in the recruitment to the centrosome of numerous additional proteins such as gamma-tubulin and Pericentrin. Here, we examine Cep192's function in interphase cells.

View Article and Find Full Text PDF

There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration.

View Article and Find Full Text PDF

CEP192 is a centrosome protein that plays a critical role in centrosome biogenesis and function in mammals, Drosophila and C. elegans. Moreover, CEP192-depleted cells arrest in mitosis with disorganized microtubules, suggesting that CEP192's function in spindle assembly goes beyond its role in centrosome activity and pointing to a potentially more direct role in the regulation of the mitotic microtubule landscape.

View Article and Find Full Text PDF

During cell division, microtubules organize a bipolar spindle to drive accurate chromosome segregation to daughter cells. Microtubules are nucleated by the γ-TuRC, a γ-tubulin complex that acts as a template for microtubules with 13 protofilaments. Cells lacking γ-TuRC core components do nucleate microtubules; however, these polymers fail to form bipolar spindles.

View Article and Find Full Text PDF

Background: Retinoids play an important role in skin homeostasis and when administered topically cause skin hyperplasia, abnormal epidermal differentiation and inflammation. Thyroidal status in humans also influences skin morphology and function and we have recently shown that the thyroid hormone receptors (TRs) are required for a normal proliferative response to 12-O-tetradecanolyphorbol-13-acetate (TPA) in mice.

Methodology/principal Findings: We have compared the epidermal response of mice lacking the thyroid hormone receptor binding isoforms TRα1 and TRβ to retinoids and TPA.

View Article and Find Full Text PDF

Chromosome movements are linked to the active depolymerization of spindle microtubule (MT) ends. Here we identify the kinesin-13 family member, KLP59D, as a novel and uniquely important regulator of spindle MT dynamics and chromosome motility in Drosophila somatic cells. During prometaphase and metaphase, depletion of KLP59D, which targets to centrosomes and outer kinetochores, suppresses the depolymerization of spindle pole-associated MT minus ends, thereby inhibiting poleward tubulin Flux.

View Article and Find Full Text PDF

The cellular mechanisms used to generate sufficient microtubule polymer mass to drive the assembly and function of the mitotic spindle remain a matter of great interest. As the primary microtubule nucleating structures in somatic animal cells, centrosomes have been assumed to figure prominently in spindle assembly. At the onset of mitosis, centrosomes undergo a dramatic increase in size and microtubule nucleating capacity, termed maturation, which is likely a key event in mitotic spindle formation.

View Article and Find Full Text PDF

Background: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-stranded RNAs targeting 23,835 human genes, we performed a loss of function screen to look for small interfering RNAs that arrest cells in metaphase.

View Article and Find Full Text PDF

As cells enter mitosis, centrosomes dramatically increase in size and ability to nucleate microtubules. This process, termed centrosome maturation, is driven by the accumulation and activation of gamma-tubulin and other proteins that form the pericentriolar material on centrosomes during G2/prophase. Here, we show that the human centrosomal protein, Cep192 (centrosomal protein of 192 kDa), is an essential component of the maturation machinery.

View Article and Find Full Text PDF

IkappaB kinase 2 (IKK2 or IKKbeta) is a component of the IKK complex that coordinates the cellular response to a diverse set of extracellular stimuli, including cytokines, microbial infection, and stress. In response to an external stimulus, the complex is activated, resulting in the phosphorylation and subsequent proteasome-mediated degradation of IkappaB proteins. This event triggers the nuclear import of the NF-kappaB transcription factor, which activates the transcription of genes that regulate a variety of fundamental biological processes, including immune response, cell survival, and development.

View Article and Find Full Text PDF

FOXJ2 is a fork head transcriptional activator, the expression of which starts very early in embryonic development and it is distributed widely in the adult. Here, we describe the characterization of domains that are important for its function. FOXJ2 is localized constitutively at the nucleus of the cell.

View Article and Find Full Text PDF