Publications by authors named "Maria A Forteza-Genestra"

The objective of the present study was to determine the variability of platelet lysate-derived extracellular vesicles (pEV), in terms of characteristics and functionality through wound healing assays, when isolated either from platelet concentrates (PC, obtained from 5 donors) or from multiple PC (MPC, that is 50 donors). pEV were isolated under GMP-like conditions in a clean room using Size Exclusion Chromatography (SEC). The differential characteristics between pEV obtained from PC (PC-EV) or MPC (MPC-EV) were evaluated by means of protein concentration, Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM), and flow cytometry using the MACSPlex™ arrays for surface analysis profiling of EV.

View Article and Find Full Text PDF

Objective: MSCs and Platelet-Rich Plasma are the main focus in the study of new regenerative treatments aimed to reverse Osteoarthritis (OA). However, extracellular vesicles (EVs) present several advantages to cell-based treatments. Thus, the aim of this study was to compare and evaluate the regenerative potential of MSC-derived EVs (cEVs) and platelet-derived EVs (pEVs) in an OA cartilage rat model.

View Article and Find Full Text PDF

Aims: Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges.

View Article and Find Full Text PDF

Background/objective: Platelet derived extracellular vesicles (pEV) are promising therapeutical tools for bone healing applications. In fact, several studies have already demonstrated the efficacy of Extracellular Vesicles (EV) in promoting bone regeneration and repair in various orthopedic models. Therefore, to evaluate the translational potential in this field, an study was performed.

View Article and Find Full Text PDF

Hydrogels and extracellular vesicle-based therapies have been proposed as emerging therapeutic assets in wound closure. The combination of these elements has given good results in managing chronic and acute wounds. The intrinsic characteristics of the hydrogels in which the extracellular vesicles (EVs) are loaded allow for overcoming barriers, such as the sustained and controlled release of EVs and the maintenance of the pH for their conservation.

View Article and Find Full Text PDF

Gingival regeneration aims at restoring the architecture and functionality of oral damaged tissue. Different biomaterials or biological materials have been tested for tissue repair, such as platelet concentrates such as PL. In this article, the use of extracellular vesicles (EVs) derived from platelet lysate (PL) and their combination with hyaluronic acid biomaterials (HA) in an in vitro wound healing assay is investigated.

View Article and Find Full Text PDF

Metallic material functionalization with Extracellular Vesicles (EVs) is a desirable therapeutic approach to improve regenerative procedures. Among the different functionalization strategies available, here we have compared drop casting on machined Ti surfaces, drop casting on nanostructured TiO surfaces and polymeric entrapment with polydopamine. EVs are a heterogeneous population of communication nanovesicles released by cells that are being intensively investigated for their use in therapeutics.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are used in different studies to prove their potential as a cell-free treatment due to their cargo derived from their cellular source, such as platelet lysate (PL). When used as treatment, EVs are expected to enter the target cells and effect a response from these. In this research, PL-derived EVs have been studied as a cell-free treatment for osteoarthritis (OA).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) present a great potential for the development of new treatments in the biomedical field. To be used as therapeutics, many different sources have been used for EVs obtention, while only a few studies have addressed the use of platelet-derived EVs (pEVs). In fact, pEVs have been shown to intervene in different healing responses, thus some studies have evaluated their regenerative capability in wound healing or hemorrhagic shock.

View Article and Find Full Text PDF

Extracellular Vesicles (EVs) are biological nanovesicles that play a key role in cell communication. Their content includes active biomolecules such as proteins and nucleic acids, which present great potential in regenerative medicine. More recently, EVs derived from Platelet Lysate (PL) have shown an osteogenic capability comparable to PL.

View Article and Find Full Text PDF

Aims: Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have been recently identified as vital components of cell-based therapies based on the observation that conditioned media from cultured stromal cells reproduce some of the beneficial effects of intact cells. In order to obtain clinically active EVs derived from Mesenchymal Stromal Cells (MSCs) different procedures have been reported in the literature. Usually, non-confluent cells are incubated with culture medium for 48 h either with EV-depleted Fetal Bovine Serum (FBS) or without FBS.

View Article and Find Full Text PDF