A series of novel (CNN) cyclometalated Au complexes of general formula [Au(bipy-H)X][PF] (bipy-H = CNN cyclometalated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine) were prepared with a range of anionic ligands X in the fourth coordination position, featuring C (alkynyl)-, N-, O-, or S-donor atoms. The X ligands are varied in nature and include three coumarins, 4-ethynylaniline, saccharine, and thio-β-d-glucose tetraacetate, the tripeptide glutathione (GSH), and a coumarin-substituted amide derived from 4-ethynylaniline. The gold(I) complex [Au(CArNHCOQ)(PPh)] (HCArNHCOQ = N-(4-ethynylphenyl)-2-oxo-2 H-chromene-3-carboxamide) was also prepared for comparison.
View Article and Find Full Text PDFThe encapsulation of Pt and Au-based anticancer agents within a protein cage is a promising way to enhance the selectivity of these potential drugs. Here a cytotoxic organometallic compound containing platinum(II) and gold(I) has been encapsulated within a ferritin nanocage (AFt). Inductively plasma coupled mass spectrometry data, collected to evaluate the amount of Pt and Au within the cage, indicate disruption of the starting heterobimetallic complex upon encapsulation within the nanocage.
View Article and Find Full Text PDFTwo anticancer gold(iii) compounds, Au2phen and Auoxo4, were encapsulated within a ferritin nanocage. The gold-compound loaded proteins were characterized by UV-Vis spectroscopy, inductively coupled plasma mass spectrometry and circular dichroism. X-ray crystallography shows that the compounds degrade upon encapsulation and gold(i) ions bind Ft within the cage, close to the side chains of Cys126.
View Article and Find Full Text PDFGold compounds form a new class of promising metal-based drugs with a number of potential therapeutic applications, particularly in the fields of anticancer and antimicrobial treatments. Previous research revealed that a group of structurally diverse gold compounds cause conspicuous inhibition of the protease activities of the human proteasome. Given the pharmacological importance of protease inhibition, the present study further explored whether these gold compounds might inhibit a few other proteases that are accepted druggable targets for disease treatment.
View Article and Find Full Text PDFThe novel heteroleptic cyclometalated complex [Au(py-H)(mnt)] (1; py-H=C-deprotonated 2-benzylpyridine; mnt =1,2-dicyanoethene-1,2-dithiolate) was tested against a panel of ten Gram positive (belonging to the Staphylococcus, Streptococcus spp. and Bacillus clausii), Gram negative (E. coli, K.
View Article and Find Full Text PDFIn the last few years gold(III) complexes have attracted growing attention in the medicinal chemistry community as candidate anticancer agents. In particular some organogold(III) compounds manifested quite attractive pharmacological behaviors in preclinical studies. Here we compare the chemical and biological properties of the novel organogold(III) complex [Au(bipy(dmb)-H)(NH(CO)CH3)][PF6] (Aubipy(aa)) with those of its parent compounds [Au(bipy(dmb)-H)(OH)][PF6] (Aubipy(c)) and [Au2(bipy(dmb)-H)2)(μ-O)][PF6]2 (Au2bipy(c)), previously synthesized and characterized.
View Article and Find Full Text PDFAuoxo3, a cytotoxic gold(iii) compound, was encapsulated within a ferritin nanocage. Inductively coupled plasma mass spectrometry, circular dichroism, UV-Vis absorption spectroscopy and X-ray crystallography confirm the potential-drug encapsulation. The structure shows that naked Au(i) ions bind to the side chains of Cys48, His49, His114, His114 and Cys126, Cys126, His132, His147.
View Article and Find Full Text PDFThe reactivity of three cytotoxic organometallic gold(III) complexes with cyclometalated C,N,N and C,N ligands (either six- or five-membered metallacycles), as well as that of two representative gold(III) complexes with N-donor ligands, with biological nucleophiles has been studied by ESI-MS on ion trap and time-of-flight instruments. Specifically, the gold compounds were reacted with mixtures of nucleophiles containing l-histidine (imine), l-methionine (thioether), l-cysteine (thiol), l-glutamic acid (carboxylic acid), methylseleno-l-cysteine (selenoether), and in situ generated seleno-l-cysteine (selenol) to judge the preference of the gold compounds for binding to selenium-containing amino acid residues. Moreover, the gold compounds' reactivity was studied with proteins and nucleic acid building blocks.
View Article and Find Full Text PDFA novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin.
View Article and Find Full Text PDFA new bipyridine ligand, 6-(1-phenylbenzyl)-2,2'-bipyridine, has been prepared by a multistep synthesis starting from the corresponding substituted pyridine. The coordinating properties of the new ligand have been tested with two d(8) metal ions, Pt(ii) and Pd(ii), to give the cyclometalated complexes [Pt(N,N,C)Cl] and [Pd(N,N,C)Cl], where N,N,C is a terdentate deprotonated bipyridine containing a new stereogenic carbon atom directly generated by C-H bond activation. The single-crystal of the platinum complex has been solved by X-ray diffraction.
View Article and Find Full Text PDFA new crystal structure is reported here for the adduct formed in the reaction between NH4 [Au(Sac)2], AuSac2, a cytotoxic homoleptic gold(I) complex with the saccharinate ligand, and the model protein hen egg white lysozyme. To produce this adduct, AuSac2 breaks down and releases both saccharinate ligands. The resulting Au(I) ions bind the protein to ND1 and NE2 atoms of His15 but also to SD atom of the zero-solvent accessible Met105 side chain, which is located in the protein hydrophobic box.
View Article and Find Full Text PDFThe structure and stability of the adduct formed in the reaction between Auoxo3, a dinuclear gold(iii) compound, and the model protein hen egg white lysozyme (HEWL) are investigated by X-ray crystallography, UV-Vis absorption spectroscopy and circular dichroism (CD). It is found that Auoxo3 breaks down completely, undergoes reduction and produces reactive gold(i) species able to bind the protein and form stable derivatives. The behaviour of Auoxo3 is compared with that of two analogous gold(iii) complexes previously studied: a few significant differences are highlighted.
View Article and Find Full Text PDFThe structure of the adduct formed in the reaction between Aubipy(c), a cytotoxic organogold(III) compound, and the model protein hen egg white lysozyme (HEWL) has been solved by X-ray crystallography. It emerges that Aubipy(c), after interaction with HEWL, undergoes reduction of the gold(III) center followed by detaching of the cyclometalated ligand; the resulting naked gold(I) ion is found bound to the protein at Gln121. A direct comparison between the present structure and those previously solved for the lysozyme adducts with other gold(III) compounds demonstrates that coordinated ligands play a key role in the protein-metallodrug recognition process.
View Article and Find Full Text PDFSix structurally diverse cytotoxic gold compounds are reported to cause profound and differential inhibition of the three main catalytic activities of purified 20S proteasome whilst auranofin, an established gold(I) drug in clinical use, is nearly ineffective. In particular, the gold(I) complex [(pbiH)Au(PPh3)]PF6, turns out to be the most potent inhibitor of all three enzyme activities with sub-micromolar IC50 values. The present results further support the view that proteasome inhibition may play a major--yet not exclusive--role in the cytotoxic actions of gold based anticancer agents.
View Article and Find Full Text PDFNa(+)/K(+)-ATPase is in charge of maintaining the ionic and osmotic intracellular balance by using ATP as an energy source to drive excess Na(+) ions out of the cell in exchange for K(+) ions. We explored whether three representative cytotoxic gold(III) compounds might interfere with Na(+)/K(+)-ATPase and cause its inhibition at pharmacologically relevant concentrations. The tested complexes were [Au(bipy)(OH)2][PF6] (bipy=2,2'-bipyridine), [Au(py(dmb)-H)(CH3COO)2] (py(dmb)-H=deprotonated 6-(1,1-dimethylbenzyl)-pyridine), and [Au(bipy(dmb)-H)(OH)][PF6] (bipy(dmb)-H=deprotonated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine).
View Article and Find Full Text PDFThe reaction of the cyclometalated rollover complex [Pt(bpy-H)(Me)(DMSO)] (bpy-H = cyclometalated 2,2'-bipyridine) with two diphosphines, dppm (1,1-bis(diphenylphosphino)methane) and dppe (1,2-bis(diphenylphosphino)ethane), was investigated. According to the reaction conditions, dppm behaves as a monodentate, bridging or chelated ligand, whereas dppe gave only chelated species. Some aspects of the reactivity of the isolated species were studied, including protonation with [H3O·18-crown-6][BF4] and coordination reactions of mononuclear complexes, obtaining, inter alia, rare examples of unsymmetrical organometallic species with bridging dppm.
View Article and Find Full Text PDFRollover cyclometalation involves bidentate heterocyclic donors, unusually acting as cyclometalated ligands. The resulting products, possessing a free donor atom, react differently from the classical cyclometalated complexes. Taking advantage of a "rollover"/"retro-rollover" reaction sequence, a succession of oxidative addition and reductive elimination in a series of platinum(II) complexes [Pt(N,C)(Me)(PR3)] resulted in a rare C(sp(2))-C(sp(3)) bond formation to give the bidentate nitrogen ligands 3-methyl-2,2'-bipyridine, 3,6-dimethyl-2,2'-bipyridine, and 3-methyl-2-(2'-pyridyl)-quinoline, which were isolated and characterized.
View Article and Find Full Text PDFGold(I) and gold(III) complexes derived from 2-(2'-pyridyl)benzimidazole (pbiH) were proven to be a promising class of in vitro antitumor agents against A2780 human ovarian cancer cells. In this paper, a comparative electrochemical, UV-vis absorption, and emission spectroscopic investigation is reported on pbiH, the two mononuclear Au(III) complexes [(pbi)AuX2] (X = Cl (1), AcO (2)), the four mononuclear Au(I) derivatives [(pbiH)AuCl] (3), [(pbiH)Au(PPh3)]PF6 ((4(+))(PF6(-))), [(pbi)Au(PPh3)] (5), and [(pbi)Au(TPA)] (6), the three mixed-valence Au(III)/Au(I) complexes [(μ-pbi)Au2Cl3] (7), [(Ph3P)Au(μ-pbi)AuX2]PF6 (X = Cl ((8(+))(PF6(-))), AcO ((9(+))(PF6(-)))), and the binuclear Au(I)-Au(I) compound [(μ-pbi)Au2(PPh3)2]PF6 ((10(+))(PF6(-))). All complexes feature irreversible reduction processes related to the Au(III)/Au(I) or Au(I)/Au(0) processes and peculiar luminescent emission at about 360-370 nm in CH2Cl2, with quantum yields that are remarkably lower ((0.
View Article and Find Full Text PDFThe reaction of Auoxo6, a dinuclear gold(III) complex, with the model protein bovine pancreatic ribonuclease is explored here by X-ray diffraction and ESI mass spectrometry. Data provide clues on the processes of adduct formation and of enzyme inhibition and, inductively, on the likely mode of action of this metallodrug.
View Article and Find Full Text PDFThe interactions between a few representative gold-based drugs and hen egg white lysozyme were studied by X-ray crystallography. High resolution crystal structures solved for three metallodrug-protein adducts provide valuable insight into the molecular mechanism of these promising metal compounds and the inherent protein metalation processes.
View Article and Find Full Text PDFPicking a fight with parasites! Trypanothione reductase (TR) is a validated drug target for the development of antileishmanial agents. A group of structurally diverse gold-containing compounds was evaluated in vitro for TR inhibition. A number of compounds exhibited potent activity and deserve further pharmacological evaluation.
View Article and Find Full Text PDFRollover cyclometalation of 2-(2'-pyridyl)quinoline, L, allowed the synthesis of the family of complexes [Pt(L-H)(X)(L')] and [Pt(L*)(X)(L')][BF4] (X = Me, Cl; L' = neutral ligand), the former being the first examples of Pt(II) rollover complexes derived from the ligand L. The ligand L* is a C,N cyclometalated, N-protonated isomer of L, and can also be described as an abnormal-remote pyridylene. The corresponding [Pt(L-H)(Me)(L')]/[Pt(L*)(Me)(L')](+) complexes constitute an uncommon Brønsted-Lowry acid-base conjugated couple.
View Article and Find Full Text PDFProtein metalation processes are crucial for the mechanism of action of several anticancer metallodrugs and warrant deeper characterisation. We have explored the reactions of three cytotoxic gold(III) compounds-namely [(bipy(2Me))(2)Au(2)(μ-O)(2)][PF(6)](2) (where bipy(2Me) is 6,6'-dimethyl-2,2'-bipyridine) (Auoxo6), [(phen(2Me))(2)Au(2)(μ-O)(2)][PF(6)](2) (where phen(2Me) is 2,9-dimethyl-1,10-phenanthroline) (Au(2)phen) and [(bipy(dmb)-H)Au(OH)][PF(6)] [where bipy(dmb)-H is deprotonated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine] (Aubipyc)-with two representative model proteins, i.e.
View Article and Find Full Text PDFBased on ESI-MS measurements, we show here that some representative cytotoxic gold(III) compounds produce stable adducts upon reaction with the copper chaperone Atox-1; notably, such adducts contain gold in the oxidation state +1. These findings are of interest to understand the intracellular metabolism of medicinal gold species and to develop new potent inhibitors of the copper trafficking system.
View Article and Find Full Text PDFA variety of gold(III) and gold(I) derivatives of 2-(2'-pyridyl)benzimidazole (pbiH) were synthesized and fully characterized and their antiproliferative properties evaluated in a representative ovarian cancer cell line. The complexes include the mononuclear species [(pbi)AuX(2)] (X = Cl, 1; OAc, 2), [(pbiH)AuCl] (3), [(pbiH)Au(PPh(3))][PF(6)] (4-PF(6)), and [(pbi)Au(L)] (L = PPh(3), 5; TPA, 6), and the binuclear gold(I)/gold(I) and gold(I)/gold(III) derivatives [(PPh(3))(2)Au(2)(μ(2)-pbi)][PF(6)] (10-PF(6)), [ClAu(μ(3)-pbi)AuCl(2)] (7),and [(PPh(3))Au(μ(3)-pbi)AuX(2)][PF(6)] (X = Cl, 8-PF(6); OAc, 9-PF(6)). The molecular structures of 6, 7, and 10-PF(6) were determined by X-ray diffraction analysis.
View Article and Find Full Text PDF