Circulation
June 2024
Background: Ascending aorta dilation and aortic valve degeneration are common complications in patients with bicuspid aortic valve. Several retrospective studies have suggested the benefit of statins in reducing these complications. This study aimed to determine whether atorvastatin treatment is effective in reducing the growth of aortic diameters in bicuspid aortic valve and if it slows the progression of valve calcification.
View Article and Find Full Text PDFSci Rep
April 2023
Succinate is enhanced during initial reperfusion in blood from the coronary sinus in ST-segment elevation myocardial infarction (STEMI) patients and in pigs submitted to transient coronary occlusion. Succinate levels might have a prognostic value, as they may correlate with edema volume or myocardial infarct size. However, blood from the coronary sinus is not routinely obtained in the CathLab.
View Article and Find Full Text PDFBasic Res Cardiol
January 2021
Remote ischemic conditioning (RIC) and the GLP-1 analog exenatide activate different cardioprotective pathways and may have additive effects on infarct size (IS). Here, we aimed to assess the efficacy of RIC as compared with sham procedure, and of exenatide, as compared with placebo, and the interaction between both, to reduce IS in humans. We designed a two-by-two factorial, randomized controlled, blinded, multicenter, clinical trial.
View Article and Find Full Text PDFGlioma-initiating cells (GICs), also called glioma stem cells, are responsible for tumor initiation, relapse, and therapeutic resistance. Here, we show that TGF-β inhibitors, currently under clinical development, target the GIC compartment in human glioblastoma (GBM) patients. Using patient-derived specimens, we have determined the gene responses to TGF-β inhibition, which include inhibitors of DNA-binding protein (Id)-1 and -3 transcription factors.
View Article and Find Full Text PDFAstrocytes are critical participants in synapse development and function, but their role in synaptic plasticity is unclear. Eph receptors and their ephrin ligands have been suggested to regulate neuron-glia interactions, and EphA4-mediated ephrin reverse signaling is required for synaptic plasticity in the hippocampus. Here we show that long-term potentiation (LTP) at the CA3-CA1 synapse is modulated by EphA4 in the postsynaptic CA1 cell and by ephrin-A3, a ligand of EphA4 that is found in astrocytes.
View Article and Find Full Text PDFIncreasing evidence indicates the importance of neuron-glia communication for synaptic function, but the mechanisms involved are not fully understood. We reported that the EphA4 receptor tyrosine kinase is in dendritic spines of pyramidal neurons of the adult hippocampus and regulates spine morphology. We now show that the ephrin-A3 ligand, which is located in the perisynaptic processes of astrocytes, is essential for maintaining EphA4 activation and normal spine morphology in vivo.
View Article and Find Full Text PDFThe family of CREB (cAMP response element-binding protein) transcription factors are involved in a variety of biological processes including the development and plasticity of the nervous system. In the maturing and adult brain, CREB genes are required for activity-dependent processes, including synaptogenesis, refinement of connections and long-term potentiation. Here, we use CREB1(Nescre)CREM(-/-) (cAMP-responsive element modulator) mutants to investigate the role of these genes in stimulus-independent patterns of neural activity at early stages.
View Article and Find Full Text PDFThe family of CREB transcription factors is involved in a variety of biological processes including the development and plasticity of the nervous system. To gain further insight into the roles of CREB family members in the development of the embryonic brain, we examined the migratory phenotype of CREB1(Nescre)CREM(-/-) mutants. We found that the lack of CREB/CREM genes is accompanied by anatomical defects in specific layers of the olfactory bulb, hippocampus and cerebral cortex.
View Article and Find Full Text PDFPatterned intrinsic network activity plays a central role in shaping immature neuronal networks into functional circuits. However, the long-lasting signals that regulate spontaneous activity of developing circuits have not been identified. Here we study the net impact of TrkB signaling on early network activity of identified neuronal populations by analyzing postnatal hippocampi from trkB null mice.
View Article and Find Full Text PDFTo determine the in vivo targets of long-lasting actions of TrkB signaling on synaptic function we analyze synaptic components of excitatory and inhibitory circuits in the cerebral cortex of trkB (-/-) mice. First, we show that K(+)-evoked glutamate and GABA release from forebrain mutant synaptosomes was decreased. Moreover, the dependence of regulated exocytosis on the SNARE SNAP-25 and the Ca(2+)-dependent neurotransmitter release were also impaired in trkB (-/-) mice.
View Article and Find Full Text PDFSpontaneous neural activity is a basic property of the developing brain, which regulates key developmental processes, including migration, neural differentiation and formation and refinement of connections. The mechanisms regulating spontaneous activity are not known. By using transgenic embryos that overexpress BDNF under the control of the nestin promoter, we show here that BDNF controls the emergence and robustness of spontaneous activity in embryonic hippocampal slices.
View Article and Find Full Text PDFSpontaneous neuronal activity is essential to neural development. Until recently, neurons were believed to be the only excitable cells to display spontaneous activity. However, cultured astrocytes and, more recently, astrocytes in situ are now known to exhibit spontaneous Ca2+ transients.
View Article and Find Full Text PDF