Three-prime repair exonuclease 1 knockout (Trex1) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) mutations in respiratory complexes subunits contribute to a large spectrum of human diseases. Nonetheless, ribosomal RNA variants remain largely under-investigated from a functional point of view. We here report a unique combination of two rare mitochondrial rRNA variants detected by serendipity in a subject with chronic granulomatous disease and never reported to co-occur within the same mitochondrial haplotype.
View Article and Find Full Text PDFBackground: Pyruvate dehydrogenase (PDH) occupies a central node of intermediary metabolism, converting pyruvate to acetyl-CoA, thus committing carbon derived from glucose to an aerobic fate rather than an anaerobic one. Rapidly proliferating tissues, including human tumors, use PDH to generate energy and macromolecular precursors. However, evidence supports the benefits of constraining maximal PDH activity under certain contexts, including hypoxia and oncogene-induced cell growth.
View Article and Find Full Text PDFAlternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH).
View Article and Find Full Text PDFTransmitochondrial cytoplasmic hybrids (cybrids) are well established model systems to reveal the effects of mitochondrial DNA (mtDNA) mutations on cell metabolism excluding the interferences of a different nuclear background. The m.3571insC mutation in the MTND1 gene of respiratory complex I (CI) is commonly detected in oncocytic tumors, in which it causes a severe CI dysfunction leading to an energetic impairment when present above 83% mutant load.
View Article and Find Full Text PDFBackground: Aerobic glycolysis, namely the Warburg effect, is the main hallmark of cancer cells. Mitochondrial respiratory dysfunction has been proposed to be one of the major causes for such glycolytic shift. This hypothesis has been revisited as tumors appear to undergo waves of gene regulation during progression, some of which rely on functional mitochondria.
View Article and Find Full Text PDFMitochondrial DNA mutations are currently investigated as modifying factors impinging on tumor growth and aggressiveness, having been found in virtually all cancer types and most commonly affecting genes encoding mitochondrial complex I (CI) subunits. However, it is still unclear whether they exert a pro- or anti-tumorigenic effect. We here analyzed the impact of three homoplasmic mtDNA mutations (m.
View Article and Find Full Text PDFBMC Med Genomics
June 2013
Background: SCA28 is an autosomal dominant ataxia associated with AFG3L2 gene mutations. We performed a whole genome expression profiling using lymphoblastoid cell lines (LCLs) from four SCA28 patients and six unrelated healthy controls matched for sex and age.
Methods: Gene expression was evaluated with the Affymetrix GeneChip Human Genome U133A 2.
Cytochrome b is the only mtDNA-encoded subunit of the mitochondrial complex III (CIII), the functional bottleneck of the respiratory chain. Previously, the human cytochrome b missense mutation m.15579A>G, which substitutes the Tyr 278 with Cys (p.
View Article and Find Full Text PDFComplex I (CI) deficiency is a frequent cause of mitochondrial disorders and, in most cases, is due to mutations in CI subunit genes encoded by mitochondrial DNA (mtDNA). In this study, we establish the pathogenic role of the heteroplasmic mtDNA m.3890G>A/MT-ND1 (p.
View Article and Find Full Text PDFRespiratory chain complex I (CI) dysfunctions have been recognized as one of the most frequent causes of mitochondrial neuro-muscular disorders. Moreover, latest reports reveal that CI impairment is a major contributing factor in many other pathological processes, including cancer. In fact, energy depletion, oxidative stress and metabolites unbalance are frequently associated with CI functional and structural alterations.
View Article and Find Full Text PDFHuman mitochondrial complex I (CI) deficiency is associated with progressive neurological disorders. To better understand the CI pathomechanism, we here studied how deletion of the CI gene NDUFS4 affects cell metabolism. To this end we compared immortalized mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and whole-body NDUFS4 knockout (KO) mice.
View Article and Find Full Text PDFMitochondrial complex I (CI) is a multi-subunit enzyme that forms the major entry point of nicotinamide adenine dinucleotide (NADH) electrons into the respiratory chain. Mutations in the NDUFS4 gene, encoding an accessory subunit of this complex, cause a Leigh-like phenotype in humans. To study the nature and penetrance of the CI defect in different tissues, we investigated the role of NDUFS4 in mice with fatal mitochondrial encephalomyopathy, caused by a systemic inactivation of the Ndufs4 gene.
View Article and Find Full Text PDFWe report a new mutation in m.12146 A>G in the mt-tRNA(His) in a family with a remarkable clinical history having different degrees of lactic acidosis and stroke-like episodes. Biochemical measurements of a muscle biopsy established an isolated complex IV deficiency, while similar analysis of fibroblasts showed a combined complex I,III and IV deficiency.
View Article and Find Full Text PDFThe mtDNA mutator mice have high levels of point mutations and linear deletions of mtDNA causing a progressive respiratory chain dysfunction and a premature aging phenotype. We have now performed molecular analyses to determine the mechanism whereby these mtDNA mutations impair respiratory chain function. We report that mitochondrial protein synthesis is unimpaired in mtDNA mutator mice consistent with the observed minor alterations of steady-state levels of mitochondrial transcripts.
View Article and Find Full Text PDFDefects in mitochondrial oxidative phosphorylation (OXPHOS) are a frequent cause of severe inherited metabolic disorders and also contribute to aging. The OXPHOS system constitutes five multi-subunit complexes embedded in the mitochondrial inner membrane. Correct function of this system requires proper assembly of the approximately 80 proteins in the complexes, as well as numerous assembly factors.
View Article and Find Full Text PDF