Publications by authors named "Mari Yoshikawa"

A 14-year-old girl with cerebral palsy (spastic diplegia) underwent examination due to a chief complaint of right foot pain, and was diagnosed with a stress fracture of the central one third of the navicular bone. The fracture was considered to have developed due to repeated loading on the navicular bone as a result of an equinus gait.Therefore, she underwent osteosynthesis and Achilles tendon lengthening to correct the equinus deformity.

View Article and Find Full Text PDF

SNARE proteins (VAMP2, syntaxin4, and SNAP23) have been thought to play a key role in GLUT4 trafficking by mediating the tethering, docking and subsequent fusion of GLUT4-containing vesicles with the plasma membrane. The precise functions of these proteins have remained elusive, however. We have now shown that depletion of the vesicle SNARE (v-SNARE) VAMP2 by RNA interference in 3T3-L1 adipocytes inhibited the fusion of GLUT4 vesicles with the plasma membrane but did not affect tethering of the vesicles to the membrane.

View Article and Find Full Text PDF

When microbes sense environmental changes, they often temporarily attenuate cell growth to adapt to the new situations, showing a lag phase. In this study, we report that the methylotrophic yeast, Pichia pastoris, induced autophagy during the lag phase after the cells were shifted from glucose to methanol medium. Through the autophagic process at least two proteins, aminopeptidase I precursor and cytosolic aldehyde dehydrogenase, were found to be transported into the vacuole, which was dependent on PpAtg11 and PpAtg17, respectively.

View Article and Find Full Text PDF

It is established that wortmannin which completely inhibits class IA PI 3-kinase activation abrogated the insulin-dependent translocation of GLUT4 to the plasma membrane in adipocytes and skeletal muscle. However, it was not clear which steps wortmannin inhibited during the whole translocation process of GLUT4. We have now dissected the each steps of the GLUT4 trafficking in 3T3-L1 adipocytes using exogenously-expressed GLUT4 reporter in combination with plasma membrane lawn assay.

View Article and Find Full Text PDF

Insulin-stimulated glucose uptake in adipocytes is mediated by translocation of vesicles containing the glucose transporter GLUT4 from intracellular storage sites to the cell periphery and the subsequent fusion of these vesicles with the plasma membrane, resulting in the externalization of GLUT4. Fusion of the GLUT4-containing vesicles with the plasma membrane is mediated by a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of vesicle-associated membrane protein 2 (VAMP2), 23-kDa synaptosomal-associated protein (SNAP23), and syntaxin4. We have now generated mouse embryos deficient in the syntaxin4 binding protein Munc18c and show that the insulin-induced appearance of GLUT4 at the cell surface is enhanced in adipocytes derived from these Munc18c-/- mice compared with that in Munc18c+/+ cells.

View Article and Find Full Text PDF