Transglutaminase enzymes catalyze Ca- and thiol-dependent posttranslational modifications of glutamine-residues that include esterification, hydrolysis and transamidation, which results in covalent protein-protein crosslinking. Among the eight transglutaminase family members in mammals, transglutaminase 1 (TG1) plays a crucial role in skin barrier formation via crosslinking and insolubilizing proteins in keratinocytes. Despite this established function in skin, novel functions have begun merging in normal tissue homeostasis as well as in pathologies.
View Article and Find Full Text PDFPlasma fibronectin (pFN) is a hepatocyte-derived circulating extracellular matrix protein that affects cell morphology, adipogenesis, and insulin signaling of adipocytes in vitro. In this study, we show pFN accrual to adipose tissue and its contribution to tissue homeostasis in mice. Hepatocyte-specific conditional Fn1 knockout mice (Fn1-/-ALB) show a decrease in adipose tissue FN levels and enhanced insulin sensitivity of subcutaneous (inguinal), visceral (epididymal) adipose tissue on a normal diet.
View Article and Find Full Text PDFOsteoclasts are multinucleated, bone-resorbing giant cells derived from monocyte-macrophage cell lines. Increased bone resorption results in loss of bone mass and osteoporosis. Osteoclast and bone marrow macrophages have been shown to express three TG enzymes (TG2, Factor XIII-A, and TG1) and TG activity to regulate osteoclast differentiation from bone marrow macrophages in vitro.
View Article and Find Full Text PDFTransglutaminases (TGs) are a family of protein cross-linking enzymes that are capable of stiffening and insolubilizing proteins and creating protein networks, and thereby altering biological functions of proteins. Their role in fibrosis progression has been widely investigated with a focus on kidney, lung, liver, and heart where activity is triggered by various stimuli including hypoxia, inflammation, and hyperglycemia. TG2 has been considered one of the key enzymes in the pathogenesis of fibrosis mainly through transforming growth factor beta (TGF-beta) signaling and matrix cross-linking mechanisms.
View Article and Find Full Text PDFThe globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation.
View Article and Find Full Text PDFFactor XIIIa (FXIIIa) is a transglutaminase of major therapeutic interest for the development of anticoagulants due to its essential role in the blood coagulation cascade. While numerous FXIIIa inhibitors have been reported, they failed to reach clinical evaluation due to their lack of metabolic stability and low selectivity over transglutaminase 2 (TG2). Furthermore, the chemical tools available for the study of FXIIIa activity and localization are extremely limited.
View Article and Find Full Text PDFAdipose tissue is a central regulator of metabolic health and its failure in obesity is a major cause of weight associated comorbidities, such as type 2 diabetes. Many extracellular matrix proteins, represented by matrisome, play a critical role in balancing adipose tissue health and dysfunction. Extracellular matrix components, produced by different cell types of adipose tissue, can modulate adipocyte function, tissue remodeling during expansion, angiogenesis, and inflammation and also form fibrotic lesions in the tissue.
View Article and Find Full Text PDFTransglutaminases TG2 and FXIII-A have recently been linked to adipose tissue biology and obesity, however, human studies for TG family members in adipocytes have not been conducted. In this study, we investigated the association of family members to acquired weight gain in a rare set of monozygotic (MZ) twins discordant for body weight, i.e.
View Article and Find Full Text PDFThe bone regenerative capacity of synthetic calcium phosphates (CaPs) can be enhanced through the enrichment with selected metal trace ions. However, defining the optimal elemental composition required for bone formation is challenging due to many possible concentrations and combinations of these elements. We hypothesized that the ideal elemental composition exists in the inorganic phase of the bone extracellular matrix (ECM).
View Article and Find Full Text PDFImmunomodulation strategies are believed to improve the integration and clinical performance of synthetic bone substitutes. One potential approach is the modification of biomaterial surface chemistry to mimic bone extracellular matrix (ECM). In this sense, we hypothesized that coating synthetic dicalcium phosphate (DCP) bioceramics with bone ECM proteins would modulate the host immune reactions and improve their regenerative performance.
View Article and Find Full Text PDFMacrophages are key players in various inflammatory disorders and pathological conditions via phagocytosis and orchestrating immune responses. They are highly heterogeneous in terms of their phenotypes and functions by adaptation to different organs and tissue environments. Upon damage or infection, monocytes are rapidly recruited to tissues and differentiate into macrophages.
View Article and Find Full Text PDFOsteoclasts, bone resorbing cells, derive from monocyte/macrophage cell lineage. Increased osteoclast activity is responsible for bone destruction in diseases such as osteoporosis, periodontitis and rheumatoid arthritis. Transglutaminases (TGs), protein crosslinking enzymes, were recently found involved in osteoclastogenesis in vivo, however their mechanisms of action have remained unknown.
View Article and Find Full Text PDFOsteopontin (OPN) belongs to the SIBLING family (Small, Integrin-Binding LIgand N-linked Glycoproteins) of mineral-binding matrix proteins found in bones and teeth. OPN is a well-known inhibitor of matrix mineralization, and enzymatic modification of OPN can affect this inhibitory function. In bone, OPN exists both as a monomer and as a high-molecular-weight polymer - the latter is formed by transglutaminase-mediated crosslinking of glutamine and lysine residues in OPN to create homotypic protein assemblies.
View Article and Find Full Text PDFAppropriate bone mass is maintained by bone-forming osteoblast and bone-resorbing osteoclasts. Mesenchymal stem cell (MSC) lineage cells control osteoclastogenesis via expression of RANKL and OPG (receptor activator of nuclear factor κB ligand and osteoprotegerin), which promote and inhibit bone resorption, respectively. Protein crosslinking enzymes transglutaminase 2 (TG2) and Factor XIII-A (FXIII-A) have been linked to activity of myeloid and MSC lineage cells; however, in vivo evidence has been lacking to support their function.
View Article and Find Full Text PDFF13A1 gene, which encodes for Factor XIII-A blood clotting factor and a transglutaminase enzyme, was recently identified as a potential causative gene for obesity in humans. In our previous in vitro work, we showed that FXIII-A regulates preadipocyte differentiation and modulates insulin signaling via promoting plasma fibronectin assembly into the extracellular matrix. To understand the role of FXIII-A in whole body energy metabolism, here we have characterized the metabolic phenotype of F13a1-/- mice.
View Article and Find Full Text PDFTransglutaminases (TGs) are a family of widely distributed enzymes that catalyze protein crosslinking by forming a covalent isopeptide bond between the substrate proteins. We have shown that MC3T3-E1 osteoblasts express Factor XIII-A (FXIII-A), and that the extracellular crosslinking activity of FXIII-A is involved in regulating matrix secretion and deposition. In this study, we have investigated the localization and potential role of intracellular FXIII-A.
View Article and Find Full Text PDFSerotonin (5-HT)--a monoamine with a variety of physiological functions--has recently emerged as a major regulator of bone mass. 5-HT is synthesized in the brain and the gut, and gut-derived 5-HT contributes to circulating 5-HT levels and is a negative modulator of bone mass and quality. 5-HT's negative effects on the skeleton are considered to be mediated via its receptors and transporter in osteoblasts and osteoclasts; however, 5-HT can also incorporate covalently into proteins via a transglutaminase-mediated serotonylation reaction, which in turn can alter protein function.
View Article and Find Full Text PDFFactor XIII-A (FXIII-A) transglutaminase (TG) was recently identified as a potential causative obesity gene in human white adipose tissue (WAT). Here, we have examined the role of TG activity and the role of protein crosslinking in adipogenesis. Mouse WAT and preadipocytes showed abundant TG activity arising from FXIII-A.
View Article and Find Full Text PDFTransglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets.
View Article and Find Full Text PDFMicrotubule components α- and β-tubulin undergo a number of posttranslational modifications that modulate their dynamics and cellular functions. These modifications include polyamination and covalent crosslinking by transglutaminase enzymes. We have demonstrated previously that the less dynamic and more stable tubulin form-detyrosinated Glu-tubulin-is found in high molecular weight, oligomeric complexes in bone-forming osteoblasts during differentiation and along with deposition of collagenous extracellular matrix.
View Article and Find Full Text PDFBackground: Osteocalcin, a protein secreted by osteoblasts during bone formation, is negatively associated with adult periodontal disease. Little is known about this association in children.
Aim: To examine the extent to which plasma undercarboxylated osteocalcin (ucOC) is associated with gingival crevicular fluid tumour necrosis factor-alpha (GCF TNF-α) - a potential marker of gingival inflammation - in children.
Circulating plasma fibronectin (pFN), produced by hepatocytes, is a major component of the noncollagenous bone matrix where it was recently shown in vivo in mice to control the biomechanical quality as well as the mineral-to-matrix ratio in bone. FN fibrillogenesis is a process generally requiring FN binding to cellular integrins, and cellular tension to elongate and assemble the molecule. Whether soluble pFN undergoes cell-mediated assembly in bone is not fully established.
View Article and Find Full Text PDFOsteoblast differentiation is regulated by the presence of collagen type I (COL I) extracellular matrix (ECM). We have recently demonstrated that Factor XIIIA (FXIIIA) transglutaminase (TG) is required by osteoblasts for COL I secretion and extracellular deposition, and thus also for osteoblast differentiation. In this study we have further investigated the link between COL I and FXIIIA, and demonstrate that COL I matrix increases FXIIIA levels in osteoblast cultures and that FXIIIA is found as cellular (cFXIIIA) and extacellular matrix (ecmFXIIIA) forms.
View Article and Find Full Text PDFBone extracellular matrix (ECM) is a 3D network, composed of collagen type I and a number of other macromolecules, including glycosaminoglycans (GAGs), which stimulate signaling pathways that regulate osteoblast growth and differentiation. To model the ECM of bone for tissue regenerative approaches, dense collagen/chitosan (Coll/CTS) hybrid hydrogels were developed using different proportions of CTS to mimic GAG components of the ECM. MC3T3-E1 mouse calvaria preosteoblasts were seeded within plastically compressed Coll/CTS hydrogels with solid content approaching that of native bone osteoid.
View Article and Find Full Text PDFBone wound healing after surgical drilling/cutting initially involves a typical inflammatory response with a leukocyte-rich cell infiltrate whose professional phagocytes (neutrophils and macrophages) clear the wound site of various bacterial (if present), particulate, and insoluble components arising from the original wounding event. As part of this process, in a surgical model of bone repair in rats, osteopontin (OPN) secreted by macrophages - with its known mineral-binding properties arising from abundant calcium-binding phosphorylations and overall net negative charge - binds to the newly exposed mineralized surfaces of particulate bone debris and the osseous wound margins created by the drilling, as shown by high-resolution immunogold labeling and transmission electron microscopy. For bone debris powder, OPN serves as an opsonin for clearance by macrophage phagocytosis, as demonstrated in vitro by phagocytosis assays using cultured J774.
View Article and Find Full Text PDF