A Correction to this paper has been published: https://doi.org/10.1038/s41551-020-0569-y.
View Article and Find Full Text PDFCompared to the visible and near-infrared, the short-wave infrared region (SWIR; 1000-2000 nm) has excellent properties for imaging: low autofluorescence, reduced scattering, and a low-absorption cross-section of blood or tissue. However, the general adoption of SWIR imaging in biomedical research will be enhanced by a broader availability of versatile and bright contrast materials. Quantum dots (QDs) are bright and compact SWIR emitters with narrow size distributions and emission spectra, but their use is limited by the shortcomings of established ligand systems for SWIR QDs.
View Article and Find Full Text PDFMonitoring the progression of non-alcoholic fatty liver disease is hindered by a lack of suitable non-invasive imaging methods. Here, we show that the endogenous pigment lipofuscin displays strong near-infrared and shortwave-infrared fluorescence when excited at 808 nm, enabling label-free imaging of liver injury in mice and the discrimination of pathological processes from normal liver processes with high specificity and sensitivity. We also show that the near-infrared and shortwave-infrared fluorescence of lipofuscin can be used to monitor the progression and regression of liver necroinflammation and fibrosis in mouse models of non-alcoholic fatty liver disease and advanced fibrosis, as well as to detect non-alcoholic steatohepatitis and cirrhosis in biopsied samples of human liver tissue.
View Article and Find Full Text PDFFluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR.
View Article and Find Full Text PDFFluorescent analogues of the indole side chain of tryptophan can be useful spectroscopic probes of protein-protein and protein-DNA interactions. Here we present linear dichroism and solvent-dependent spectroscopic studies of two fluorescent analogues of indole, in which the organic C═C unit is substituted with the isosteric inorganic B-N unit. We studied the so-called "external" BN indole, which has C2v symmetry, and the "fused" BN indole with Cs symmetry.
View Article and Find Full Text PDFMutations near the fluorescing chromophore of the green fluorescent protein (GFP) have direct effects on the absorption and emission spectra. Some mutants have significant band shifts and most of the mutants exhibit a loss of fluorescence intensity. In this study we continue our investigation of the factors controlling the excited state proton transfer (PT) process of GFP, in particular to study the effects of modifications to the key side chain Ser205 in wt-GFP, proposed to participate in the proton wire.
View Article and Find Full Text PDF