Publications by authors named "Mari Rosen"

Although polyethylene (PE) and polypropylene (PP) are by far the world's largest volume plastics, only a tiny fraction of these energy-rich polyolefins are currently recycled. Depolymerization of PE to its constituent monomer, ethylene, is highly endothermic and conventionally accessible only through unselective, high-temperature pyrolysis. Here, we provide experimental demonstrations of our recently proposed tandem catalysis strategy, which uses ethylene to convert PE to propylene, the commodity monomer used to make PP.

View Article and Find Full Text PDF

Process conditions allow a titanium catalyst to add just two ethylene molecules to an α-olefin.

View Article and Find Full Text PDF

We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[3,2-a:2',3'-c]phenazine)L2 ](2+) -based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity.

View Article and Find Full Text PDF

Coordination chemistry is regularly used to generate supramolecular constructs with unique environments around embedded components to affect their intrinsic properties. In certain cases, it can also be used to effect changes in supramolecular structure reminiscent of those that occur within stimuli-responsive biological structures, such as allosteric enzymes. Indeed, among a handful of general strategies for synthesizing such supramolecular systems, the weak-link approach (WLA) uniquely allows one to toggle the frameworks' structural state post-assembly via simple reactions involving hemilabile ligands and transition metal centers.

View Article and Find Full Text PDF

Air-stable, heteroligated platinum(II) weak-link approach (WLA) tweezer and triple-layer complexes that possess P,X-Aryl hemilabile ligands (P^ = Ph2PCH2CH2-, X = chalcoethers or amines) have been synthesized via the halide-induced ligand rearrangement (HILR) reaction, using a one-pot, partial chloride-abstraction method. The approach is general and works with a variety of phosphine-based hemilabile ligands; when a P,S-Ph ligand is used as the relatively strongly chelating ligand, heteroligated complexes are formed cleanly when an ether- (P,O-Ph), amine- (P,N-Ph2), or fluorinated thioether-based (P,S-C6F4H) hemilabile ligand is used as the weakly chelating counterpart. The HILR reaction has also been used to synthesize bisplatinum(II) macrocycles free of oligomeric material without having to resort to the high-dilution conditions typical for macrocycle synthesis.

View Article and Find Full Text PDF

The formation of heteroligated Rh(I) complexes containing two different hemilabile phosphinoalkyl ligands, (κ(2)-Ph(2)PCH(2)CH(2)S-Aryl)(κ(1)-Ph(2)PCH(2)CH(2)O-C(6)H(5))RhCl, through a halide-induced ligand rearrangement (HILR) reaction has been studied mechanistically. The half-life of this rearrangement reaction depends heavily on the Rh(I) precursor used and the chelating ability of the phosphinoalkyl thioether (PS) ligand, while the chelating ability of the phosphinoalkyl ether (PO) ligand has less of an effect. An intermediate complex which contains two PO ligands, (nbd)(κ(1)-Ph(2)PCH(2)CH(2)O-C(6)H(5))(2)RhCl (nbd = norbornadiene), converts to (nbd)(κ(1)-Ph(2)PCH(2)CH(2)O-C(6)H(5))RhCl resulting in a free PO ligand.

View Article and Find Full Text PDF

Although the majority of ligands in modern chemistry take advantage of carbon-based substituent effects to tune the sterics and electronics of coordinating moieties, we describe here how icosahedral carboranes-boron-rich clusters-can influence metal-ligand interactions. Using a series of phosphine-thioether chelating ligands featuring meta- or ortho-carboranes grafted on the sulfur atom, we were able to tune the lability of the platinum-sulfur interaction of platinum(II)-thioether complexes. Experimental observations, supported by computational work, show that icosahedral carboranes can act either as strong electron-withdrawing ligands or electron-donating moieties (similar to aryl- or alkyl-based groups, respectively), depending on which atom of the carborane cage is attached to the thioether moiety.

View Article and Find Full Text PDF

The halide-induced ligand rearrangement reaction (HILR) has been employed to provide selective and exclusive in situ formation of heteroligated Rh(I), Pd(II), and Pt(II) complexes with bidentate phosphino-chalcoether ligands. To gain insights on the nature of this unique reaction, we explored this process via the stepwise addition of bidentate phosphino-chalcoether (P, X; X = S or Se) and relevant monodentate phosphine ligands with a Pt(II) metal precursor. The corresponding monoligated complexes were obtained in quantitative yields by reacting 1 equiv of a P, X bidentate ligand with Pt(II) and were fully characterized via single crystal X-ray diffraction studies and heteronuclear ((31)P, (77)Se, and (195)Pt) NMR spectroscopy in solution.

View Article and Find Full Text PDF

Bidentate phosphine-selenoether (P,Se) ligands were synthesized, and their heteroligated Pt(II) complexes were made and studied. The unique "P,S/P,Se" ligand coordination to Pt(II) can be realized via the halide-induced ligand rearrangement reaction. In all cases, the exclusive formation of semi-open heteroligated complexes was achieved as shown by (31)P and (77)Se NMR spectroscopy and from single crystal X-ray diffraction studies.

View Article and Find Full Text PDF

A central challenge of chemical biology is the development of small-molecule tools for controlling protein activity in a target-specific manner. Such tools are particularly useful if they can be systematically applied to the members of large protein families. Here we report that protein tyrosine phosphatases can be systematically 'sensitized' to target-specific inhibition by a cell-permeable small molecule, Fluorescein Arsenical Hairpin Binder (FlAsH), which does not inhibit any wild-type PTP investigated to date.

View Article and Find Full Text PDF

Building upon the discovery of Suggs and Pires that N-(2-hydroxyethyl)glycine amides undergo rapid amide cleavage under mild conditions [ Suggs, J. W. ; Pires, R.

View Article and Find Full Text PDF