Multicentric osteolysis nodulosis and arthropathy (MONA) is a rare skeletal dysplasia characterized primarily by progressive osteolysis, particularly affecting the carpal and tarsal bones, accompanied by osteoporosis. In addition, it features subcutaneous nodules on the palms and soles, along with the progressive onset of arthropathy, encompassing joint contractures, pain, swelling and stiffness. It is caused by a deficiency of the Matrix Metalloproteinase-2 (MMP2).
View Article and Find Full Text PDFPolydactyly is a rare autosomal dominant or recessive appendicular patterning defect of the hands and feet, phenotypically characterized by the duplication of digits. Postaxial polydactyly (PAP) is the most common form and includes two main types: PAP type A (PAPA) and PAP type B (PAPB). Type A involves a well-established extra digit articulated with the fifth or sixth metacarpal, while type B presents a rudimentary or poorly developed superfluous digit.
View Article and Find Full Text PDFSkeletal dysplasias comprise a large spectrum of mostly monogenic disorders affecting bone growth, patterning, and homeostasis, and ranging in severity from lethal to mild phenotypes. This study aimed to underpin the genetic cause of skeletal dysplasia in three unrelated families with variable skeletal manifestations. The six affected individuals from three families had severe short stature with extreme shortening of forelimbs, short long-bones, and metatarsals, and brachydactyly (family 1); mild short stature, platyspondyly, and metaphyseal irregularities (family 2); or a prenatally lethal skeletal dysplasia with kidney features suggestive of a ciliopathy (family 3).
View Article and Find Full Text PDFIn the last decade, the widespread use of massively parallel sequencing has considerably boosted the number of novel gene discoveries in monogenic skeletal diseases with short stature. Defects in genes playing a role in the maintenance and function of the growth plate, the site of longitudinal bone growth, are a well-known cause of skeletal diseases with short stature. However, several genes involved in extracellular matrix composition or maintenance as well as genes partaking in various biological processes have also been characterized.
View Article and Find Full Text PDFBackground: CCAAT enhancer-binding protein epsilon (C/EBPε) is a transcription factor involved in late myeloid lineage differentiation and cellular function. The only previously known disorder linked to C/EBPε is autosomal recessive neutrophil-specific granule deficiency leading to severely impaired neutrophil function and early mortality.
Objective: The aim of this study was to molecularly characterize the effects of C/EBPε transcription factor Arg219His mutation identified in a Finnish family with previously genetically uncharacterized autoinflammatory and immunodeficiency syndrome.
Silver-Russell syndrome (SRS) is a growth retardation syndrome in which loss of methylation on chromosome 11p15 (11p15 LOM) and maternal uniparental disomy for chromosome 7 [UPD(7)mat] explain 20-60% and 10% of the syndrome, respectively. To search for a molecular cause for the remaining SRS cases, and to find a possible common epigenetic change, we studied DNA methylation pattern of more than 450 000 CpG sites in 44 SRS patients. Common to all three SRS subgroups, we found a hypomethylated region at the promoter region of HOXA4 in 55% of the patients.
View Article and Find Full Text PDFIntroduction: People born preterm at very low birth weight (VLBW, ≤1500g) have higher rates of risk factors for adult-onset diseases, including cardiovascular diseases and type 2 diabetes. These risks may be mediated through epigenetic modification of genes that are critical to normal growth and development.
Methods: We measured the methylation level of an imprinted insulin-like-growth-factor 2 (IGF2) locus (IGF2/H19) in young adults born preterm at VLBW and in their peers born at term.