In an effort to characterize fruit ripening-related genes functionally, two glucosyltransferases, FaGT6 and FaGT7, were cloned from a strawberry (Fragaria x ananassa) cDNA library and the full-length open reading frames were amplified by rapid amplification of cDNA ends. FaGT6 and FaGT7 were expressed heterologously as fusion proteins in Escherichia coli and target protein was purified using affinity chromatography. Both recombinant enzymes exhibited a broad substrate tolerance in vitro, accepting numerous flavonoids, hydroxycoumarins, and naphthols.
View Article and Find Full Text PDFStrawberry (Fragaria x ananassa) fruit contains several anthocyanins that give the ripe fruits their attractive red color. The enzyme that catalyzes the formation of the first stable intermediate in the anthocyanin pathway is anthocyanidin-3-O-glucosyltransferase. A putative glycosyltransferase sequence (FaGT1) was cloned from a strawberry fruit cDNA library and the recombinant FaGT1 transferred UDP-glucose to anthocyanidins and, to a lesser extent, flavonols, generating the respective 3-O-glucosides.
View Article and Find Full Text PDFA strawberry (Fragaria x ananassa cv. Chandler) fruit cDNA (Fahyprp -cDNA) and its corresponding gene (Fahyprp) showing sequence homology to higher plant hyprp genes have been isolated. The cDNA contains an open reading frame encoding a 16 kDa protein with 156 amino acids.
View Article and Find Full Text PDF