Publications by authors named "Mari L Salmi"

Gravity directs the polarization of fern spores. This process begins with the uptake of calcium through channels at the bottom of the spore, a step necessary for the gravity response. Data showing that extracellular ATP (eATP) regulates calcium channels led to the hypothesis that extracellular nucleotides could play a role in the gravity-directed polarization of spores.

View Article and Find Full Text PDF
Article Synopsis
  • * Blocking photosynthesis with DCMU after the initial light response prevents the spores from germinating, even if phytochrome has been activated by light.
  • * The study reveals that while early light is crucial, photosynthesis and specific protein transcripts become vital later, indicating that two separate light-dependent processes are essential for spore germination.
View Article and Find Full Text PDF

Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants.

View Article and Find Full Text PDF

Early studies revealed a highly predictable pattern of gravity-directed growth and development in Ceratopteris richardii spores. This makes the spores a valuable model system for the study of how a single cell senses and responds to the force of gravity. Gravity regulates both the direction and magnitude of a trans-cell calcium current in germinating spores, and the orientation of this current predicts the polarization of spore development.

View Article and Find Full Text PDF

Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced.

View Article and Find Full Text PDF

Animal and plant cells release nucleotides into their extracellular matrix when touched, wounded, and when their plasma membranes are stretched during delivery of secretory vesicles and growth. These released nucleotides then function as signaling agents that induce rapid increases in the concentration of cytosolic calcium, nitric oxide and superoxide. These, in turn, are transduced into downstream physiological changes.

View Article and Find Full Text PDF

Plant cells release ATP into their extracellular matrix as they grow, and extracellular ATP (eATP) can modulate the rate of cell growth in diverse tissues. Two closely related apyrases (APYs) in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, function, in part, to control the concentration of eATP. The expression of APY1/APY2 can be inhibited by RNA interference, and this suppression leads to an increase in the concentration of eATP in the extracellular medium and severely reduces growth.

View Article and Find Full Text PDF

Recent data indicate that nucleotides are released into the extracellular matrix during plant cell growth, and that these extracellular nucleotides induce signaling changes that can, in a dose-dependent manner, increase or decrease the cell growth. After activation of a presumed receptor, the earliest signaling change induced by extracellular nucleotides is an increase in the concentration of cytosolic Ca(2+), but rapidly following this change is an increase in the cellular level of nitric oxide (NO). In Arabidopsis, mutants deficient in nitrate reductase activity (nia1nia2) have drastically reduced nitric oxide production and cannot transduce the effects of applied nucleotides into growth changes.

View Article and Find Full Text PDF

In single-celled spores of the fern Ceratopteris richardii, gravity directs polarity of development and induces a directional, trans-cellular calcium (Ca(2+)) current. To clarify how gravity polarizes this electrophysiological process, we measured the kinetics of the cellular response to changes in the gravity vector, which we initially estimated using the self-referencing calcium microsensor. In order to generate more precise and detailed data, we developed a silicon microfabricated sensor array which facilitated a lab-on-a-chip approach to simultaneously measure calcium currents from multiple cells in real time.

View Article and Find Full Text PDF

This work describes a rare high-throughput evaluation of gene expression changes induced by space flight in a single plant cell. The cell evaluated is the spore of the fern Ceratopteris richardii, which exhibits both perception and response to gravity. cDNA microarray and Q RT-PCR analysis of spores germinating in microgravity onboard NASA space shuttle flight STS-93 revealed changes in the mRNA expression of roughly 5% of genes analyzed.

View Article and Find Full Text PDF

Background: Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories.

View Article and Find Full Text PDF

Single-celled spores of the fern Ceratopteris richardii undergo gravity-directed cell polarity development that is driven by polar calcium currents. Here we present results that establish a role for nitric oxide (NO)/cGMP signaling in transducing the stimulus of gravity to directed polarization of the spores. Application of specific NO donors and scavengers inhibited the calcium-dependent gravity response in a dose-dependent manner.

View Article and Find Full Text PDF

Analysis of an expressed sequence tag library with more than 5,000 sequences from spores of the fern Ceratopteris richardii reveals that more than 3,900 of them represent distinct genes, and almost 70% of these have significant similarity to Arabidopsis (Arabidopsis thaliana) genes. Eight genes are common between three very different dormant plant systems, Ceratopteris spores, Arabidopsis seeds, and Arabidopsis pollen. We evaluated the pattern of mRNA abundance over the first 48 h of spore development using a microarray of cDNAs representing 3,207 distinct genes of C.

View Article and Find Full Text PDF