Triple-negative breast cancer (TNBC) is an aggressive cancer subtype for which effective therapies are unavailable. TNBC has a high frequency of tumor protein p53 (Tp53/p53)- and phosphatase and tensin homolog (PTEN) deficiencies, and combined p53- and PTEN-deficiency is associated with poor prognosis and poor response to anticancer therapies. In this study, we discovered that combined p53- and PTEN-deficiency in TNBC activates expression of the transcription factor mesenchyme homeobox 1 (MEOX1).
View Article and Find Full Text PDFMEOX1 is a homeobox transcriptional factor, and plays essential roles in regulating somite development. Our previous study indicated that MEOX1 is a critical molecular target in mesenchymal-like cancer cells in PTEN-deficient Trastuzumab resistant breast cancer. Despite the potential implication of MEOX1 for the cancer progression, no previous studies examined its level and clinical significance in lung cancer tissues.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is the most difficult subtype of breast cancer to treat due to a paucity of effective targeted therapies. Many studies have reported that breast cancer stem cells (BCSCs) are enriched in TNBC and are responsible for chemoresistance and metastasis. In this study, we identify LRP8 as a novel positive regulator of BCSCs in TNBC.
View Article and Find Full Text PDFContinued use of trastuzumab in PTEN-deficient HER2+ breast cancer induces the epithelial-to-mesenchymal transition (EMT), transforms HER2+ to triple negative breast cancer, and expands breast cancer stem cells (BCSCs). Using cancer cell lines with two distinct states, epithelial and mesenchymal, we identified novel targets during EMT in PTEN-deficient trastuzumab-resistant breast cancer. Differential gene expression and distinct responses to a small molecule in BT474 (HER2+ trastuzumab-sensitive) and the PTEN-deficient trastuzumab-resistant derivative (BT474-PTEN-LTT) provided the selection tools to identify targets during EMT.
View Article and Find Full Text PDF