Dentin hypersensitivity is a common symptom, and recent convergent evidences have reported transient receptor potential (TRP) channels in odontoblasts act as mechanical and thermal molecular sensor, which detect stimulation applied on the exposed dentin surface, to drive multiple odontoblastic cellular functions, such as sensory transduction and/or dentin formation. In the present study, we confirmed expression of TRP melastatin subfamily member-8 (TRPM8) channels in primary cultured cells derived from human dental pulp cells (HPCs) and mouse odontoblast-lineage cells (OLCs) as well as in dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP) positive acutely isolated rat odontoblasts from dental pulp tissue slice culture by immunohistochemical analyses. In addition, we detected TRPM8 channel expression on HPCs and OLCs by RT-PCR and Western blotting analyses.
View Article and Find Full Text PDFEmphysema can be induced in animals by postnatal treatment with dexamethasone (Dex) and such models have been widely used for various research. However, it is not clear what are the effects of Dex on assembly of alveolar elastic fibers in the emphysema model in mice. This study compared the expression profile of genes related to alveolar development between Dex treated and control mice during the treatment from postnatal day 3 (P3) to P14 with a 2-day break.
View Article and Find Full Text PDFIntroduction: Osmotic stress is one of the stimulations related to dental pain caused by caries or dentin hypersensitivity. The mechanism of osmotic-induced dental pain is not completely understood. The purpose of this study was to examine the responses of odontoblasts under sucrose-induced hyperosmotic stress.
View Article and Find Full Text PDFCompletely deacetylated chitosan was prepared by the treatment of commercial chitosan with 50% aqueous NaOH, and then derivatized into several new chitosan phenylcarbamate derivatives having a urea and an imide moiety at the 2-position of the glucosamine ring by the reaction with isocyanate and phthalic anhydride/isocyanate, respectively. The chitosan derivatives were coated on macroporous silica gel and evaluated as chiral stationary phases (CSPs) for high-performance liquid chromatography. The chiral recognition ability of the chitosan derivative was improved using the completely deacetylated chitosan.
View Article and Find Full Text PDF