Clostridium botulinum comprises a diverse group of botulinum toxin-producing anaerobic rod-shaped spore-forming bacteria that are ubiquitously distributed in soils and aquatic sediments. Decomposition of plants, algae, and animals creates anaerobic environments that facilitate growth of C. botulinum, which may then enter into food webs leading to intoxication of animals.
View Article and Find Full Text PDFWhen plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome.
View Article and Find Full Text PDFAtlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes.
View Article and Find Full Text PDFThe dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions.
View Article and Find Full Text PDFAnimals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles.
View Article and Find Full Text PDFChlamydia trachomatis is a leading cause of sexually transmitted infection. Diagnostic methods with easy non-invasive sample collection are important to increase testing and hence to reduce the spread of this infection. To enable more use of urine samples in C.
View Article and Find Full Text PDF