Publications by authors named "Mari D Heghinian"

Noribogaine is the long-lived human metabolite of the anti-addictive substance ibogaine. Noribogaine efficaciously reaches the brain with concentrations up to 20 μM after acute therapeutic dose of 40 mg/kg ibogaine in animals. Noribogaine displays atypical opioid-like components in vivo, anti-addictive effects and potent modulatory properties of the tolerance to opiates for which the mode of action remained uncharacterized thus far.

View Article and Find Full Text PDF
Article Synopsis
  • Peptide backbone cyclization enhances the activity and stability of small peptides, a method recently applied to disulfide-rich conotoxins from cone snail venom.
  • Two specific conotoxins (gm9a and bru9a) were modified through backbone cyclization, maintaining their native conformations and showing that this technique works for peptides with multiple disulfide bonds.
  • The cyclized version of gm9a exhibited greater potency for high voltage-activated calcium channels compared to its non-cyclized form, demonstrating the effectiveness of this method in drug development.
View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) play a pivotal role in synaptic transmission of neuronal signaling pathways and are fundamentally involved in neuronal disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In vertebrates, cholinergic pathways can be selectively inhibited by α-conotoxins; we show that in the model organism Drosophila, the cholinergic component of the giant fiber system is inhibited by α-conotoxins MII, AuIB, BuIA, EI, PeIA, and ImI. The injection of 45 pmol/fly of each toxin dramatically decreases the response of the giant fiber to dorsal longitudinal muscle (GF-DLM) connection to 20 ± 13.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson's disease, Alzheimer's disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart.

View Article and Find Full Text PDF

Spider venom toxins have raised interest in prospecting new drugs and pesticides. Nevertheless, few studies are conducted with tarantula toxins, especially with species found in Brazil. This study aims to characterize chemically and biologically the first toxin isolated from Acanthoscurria paulensis venom.

View Article and Find Full Text PDF

Screening compounds for in vivo activity can be used as a first step to identify candidates that may be developed into pharmacological agents. We developed a novel nanoinjection/electrophysiology assay that allows the detection of bioactive modulatory effects of compounds on the function of a neuronal circuit that mediates the escape response in Drosophila melanogaster. Our in vivo assay, which uses the Drosophila Giant Fiber System (GFS, Figure 1) allows screening of different types of compounds, such as small molecules or peptides, and requires only minimal quantities to elicit an effect.

View Article and Find Full Text PDF

Finding compounds that affect neuronal or muscular function is of great interest as potential therapeutic agents for a variety of neurological disorders. Alternative applications for these compounds include their use as molecular probes as well as insecticides. We have developed a bioassay that requires small amounts of compounds and allows for unbiased screening of biological activity in vivo.

View Article and Find Full Text PDF