To identify the causal agent of citrus vein enation disease, we examined by deep sequencing (Solexa-Illumina) the small RNA (sRNA) fraction from infected and healthy Etrog citron plants. Our results showed that virus-derived sRNAs (vsRNAs): (i) represent about 14.21% of the total sRNA population, (ii) are predominantly of 21 and 24 nucleotides with a biased distribution of their 5' nucleotide and with a clear prevalence of those of (+) polarity, and (iii) derive from all the viral genome, although a prominent hotspot is present at a 5'-proximal region.
View Article and Find Full Text PDFTo counteract plant antiviral defense based on RNA silencing, many viruses express proteins that inhibit this mechanism at different levels. The genome of Citrus leaf blotch virus (CLBV) encodes a 227-kDa protein involved in replication, a 40-kDa movement protein (MP), and a 41-kDa coat protein (CP). To determine if any of these proteins might have RNA silencing suppressor activities, we have used Agrobacterium-mediated transient assays in the green fluorescent protein (GFP)-expressing Nicotiana benthamiana line 16c.
View Article and Find Full Text PDFCitrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants.
View Article and Find Full Text PDF