Publications by authors named "Mari Candelore"

Hyperglucagonemia is implicated in the pathophysiology of hyperglycemia. Antagonism of the glucagon receptor (GCGR) thus represents a potential approach to diabetes treatment. Herein we report the characterization of GRA1, a novel small-molecule GCGR antagonist that blocks glucagon binding to the human GCGR (hGCGR) and antagonizes glucagon-induced intracellular accumulation of cAMP with nanomolar potency.

View Article and Find Full Text PDF

A potent, selective glucagon receptor antagonist 9m, N-[(4-{(1S)-1-[3-(3,5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine, was discovered by optimization of a previously identified lead. Compound 9m is a reversible and competitive antagonist with high binding affinity (IC(50) of 6.6 nM) and functional cAMP activity (IC(50) of 15.

View Article and Find Full Text PDF

A novel class of N-aryl-2-acylindole human glucagon receptor (hGCGR) antagonists is reported. These compounds demonstrate good pharmacokinetic profiles in multiple preclinical species. One compound from this series, indole 33, is orally active in a transgenic murine pharmacodynamic model.

View Article and Find Full Text PDF

In the course of the development of an aminobenzimidazole class of human glucagon receptor (hGCGR) antagonists, a novel class of cyclic guanidine hGCGR antagonists was discovered. Rapid N-dealkylation resulted in poor pharmacokinetic profiles for the benchmark compound in this series. A strategy aimed at blocking oxidative dealkylation led to a series of compounds with improved rodent pharmacokinetic profiles.

View Article and Find Full Text PDF

A novel class of 1,3,5-pyrazoles has been discovered as potent human glucagon receptor antagonists. Notably, compound 26 is orally bioavailable in several preclinical species and shows selectivity towards cardiac ion channels, other family B receptors such hGIP and hGLP1, and a large panel of enzymes and additional receptors. When dosed orally, compound 26 is efficacious in suppressing glucagon induced plasma glucose excursion in rhesus monkey and transgenic murine pharmacodynamic models at 1 and 10 mpk, respectively.

View Article and Find Full Text PDF

The discovery and optimization of potent and selective aminobenzimidazole glucagon receptor antagonists are described. One compound possessing moderate pharmacokinetic properties in multiple preclinical species was orally efficacious at inhibiting glucagon-mediated glucose excursion in transgenic mice expressing the human glucagon receptor, and in rhesus monkeys. The compound also significantly lowered glucose levels in a murine model of diabetes.

View Article and Find Full Text PDF

Glucose homeostasis is maintained by the combined actions of insulin and glucagon. Hyperglucagonemia and/or elevation of glucagon/insulin ratio have been reported in diabetic patients and in animal models of diabetes. Therefore, antagonizing glucagon receptor function has long been considered a useful approach to lower hyperglycemia.

View Article and Find Full Text PDF

A series of conformationally constrained tri-substituted ureas were synthesized, and their potential as glucagon receptor antagonists was evaluated. This effort resulted in the identification of compound 4a, which had a binding IC50 of 4.0 nM and was shown to reduce blood glucose levels at 3 mg/kg in glucagon-challenged mice containing a humanized glucagon receptor.

View Article and Find Full Text PDF

The demonstration of pharmacodynamic efficacy of novel chemical entities represents a formidable challenge in the early exploration of synthetic lead classes. Here, we demonstrate a technique to validate the biological efficacy of novel antagonists of the human glucagon receptor (hGCGR) in the surgically removed perfused liver prior to the optimization of the pharmacokinetic properties of the compounds. The technique involves the direct observation by (13)C NMR of the biosynthesis of [(13)C]glycogen from [(13)C]pyruvate via the gluconeogenic pathway.

View Article and Find Full Text PDF

A novel class of spiro-ureas has been discovered as potent human glucagon receptor antagonists in both binding and functional assays. Preliminary studies have revealed that compound 15 is an orally active human glucagon receptor antagonist in a transgenic murine pharmacodynamic model at 10 and 30 mpk. Compound 15 is orally bioavailable in several preclinical species and shows selectivity toward cardiac ion channels and other family B receptors, such as hGIP1 and hGLP.

View Article and Find Full Text PDF

A novel class of antagonists of the human glucagon receptor (hGCGR) has been discovered. Systematic modification of the lead compound identified substituents that were essential for activity and those that were amenable to further optimization. This SAR exploration resulted in the synthesis of 13, which exhibited good potency as an hGCGR functional antagonist (IC50 = 34 nM) and moderate bioavailability (36% in mice).

View Article and Find Full Text PDF

Glucagon receptor antagonists have been actively pursued as potential therapeutics for the treatment of type 2 diabetes. Peptidyl and non-peptidyl glucagon receptor antagonists have been shown to block glucagon-induced blood glucose elevation in both animals and humans. How the antagonists and the glucagon receptor interact in vivo has not been reported and is the subject of the current study.

View Article and Find Full Text PDF

It has been reported recently that the phosphorylated form of the immunomodulator FTY720 activates sphingosine 1-phosphate G protein-coupled receptors. Therefore, understanding the biology of this new class of receptors will be important in clarifying the immunological function of bioactive lysosphingolipid ligands. The S1P(4) receptor has generated interest due to its lymphoid tissue distribution.

View Article and Find Full Text PDF