Neuroinflammation is a salient part of diverse neurological and psychiatric pathologies that associate with neuronal hyperexcitability, but the underlying molecular and cellular mechanisms remain to be identified. Here, we show that peripheral injection of lipopolysaccharide (LPS) renders the dentate gyrus (DG) hyperexcitable to perforant pathway stimulation in vivo and increases the internal spiking propensity of dentate granule cells (DGCs) in vitro 24 h post-injection (hpi). In parallel, LPS leads to a prominent downregulation of chloride extrusion via KCC2 and to the emergence of NKCC1-mediated chloride uptake in DGCs under experimental conditions optimized to detect specific changes in transporter efficacy.
View Article and Find Full Text PDFThe Na-K-2Cl cotransporter NKCC1 is widely expressed in cells within and outside the brain. However, our understanding of its roles in brain functions throughout development, as well as in neuropsychiatric and neurological disorders, has been severely hindered by the lack of reliable data on its developmental and (sub)cellular expression patterns. We provide here the first properly controlled analysis of NKCC1 protein expression in various cell types of the mouse brain using custom-made antibodies and an NKCC1 knock-out validated immunohistochemical procedure, with parallel data based on advanced mRNA approaches.
View Article and Find Full Text PDFIntracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO , intracellular carbonic anhydrase (CA ) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme-specific functions unrelated to CO -(de)hydration.
View Article and Find Full Text PDFKCC2, best known as the neuron-specific chloride-extruder that sets the strength and polarity of GABAergic currents during neuronal maturation, is a multifunctional molecule that can regulate cytoskeletal dynamics via its C-terminal domain (CTD). We describe the molecular and cellular mechanisms involved in the multiple functions of KCC2 and its splice variants, ranging from developmental apoptosis and the control of early network events to the formation and plasticity of cortical dendritic spines. The versatility of KCC2 actions at the cellular and subcellular levels is also evident in mature neurons during plasticity, disease, and aging.
View Article and Find Full Text PDFIonotropic GABA transmission is mediated by anion (mainly Cl)-permeable GABA receptors (GABARs). In immature neurons, GABA exerts depolarizing and sometimes functionally excitatory actions, based on active uptake of Cl by the Na-K-2Cl cotransporter NKCC1. While functional evidence firmly shows NKCC1-mediated ion transport in immature and diseased neurons, molecular detection of NKCC1 in the brain has turned out to be extremely difficult.
View Article and Find Full Text PDFInhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons.
View Article and Find Full Text PDFDuring birth in mammals, a pronounced surge of fetal peripheral stress hormones takes place to promote survival in the transition to the extrauterine environment. However, it is not known whether the hormonal signaling involves central pathways with direct protective effects on the perinatal brain. Here, we show that arginine vasopressin specifically activates interneurons to suppress spontaneous network events in the perinatal hippocampus.
View Article and Find Full Text PDFBackground: Human epidemiological data suggest a link between anesthesia exposure in early postnatal life and subsequent lasting neurocognitive alterations. Understanding the underlying mechanisms of this potential association is of paramount importance in an attempt to develop protective strategies. While general anesthetics are powerful modulators of GABAergic neurotransmission, little is known about the impact of these drugs on developing GABAergic networks.
View Article and Find Full Text PDFIn adult rodent olfactory bulb, GABAergic signaling regulates migration, differentiation, and synaptic integration of newborn granule cells (GCs), migrating from the subventricular zone. Here we show that these effects depend on the formation of a postsynaptic scaffold organized by gephyrin-the main scaffolding protein of GABAergic synapses, which anchors receptors and signaling molecules to the postsynaptic density-and are regulated by the phosphorylation status of gephyrin. Using lentiviral vectors to selectively transfect adult-born GCs, we observed that overexpression of the phospho-deficient gephyrin mutant eGFP-gephyrin(S270A), which facilitates the formation of supernumerary GABAergic synapses in vitro, favors dendritic branching and the formation of transient GABAergic synapses on spines, identified by the presence of α2-GABAA Rs.
View Article and Find Full Text PDFAlthough functional glycinergic synapses have not been identified in the hippocampus, neurons in this area express Cl(-) permeable extrasynaptic glycine receptors (GlyRs). In experiments on CA3 pyramidal neurons on postnatal day 0-6 rat hippocampal slices, we detected robust GlyR activity as a tonic current and as single-channel events. Glycine release was independent of neuronal activity or extracellular Ca(2+).
View Article and Find Full Text PDFThe adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission.
View Article and Find Full Text PDF