In early disease stages, biomolecules of interest exist in very low concentrations, presenting a significant challenge for analytical devices and methods. Here, we provide a comprehensive overview of an innovative optical biosensing technology, termed magnetic modulation biosensing (MMB), its biomedical applications, and its ongoing development. In MMB, magnetic beads are attached to fluorescently labeled target molecules.
View Article and Find Full Text PDFRapid, highly sensitive, and high-throughput detection of biomarkers at low concentrations is invaluable for early diagnosis of various diseases. In many highly sensitive immunoassays, magnetic beads are used to capture fluorescently labeled target molecules. The target molecules are then quantified by detecting the fluorescent signal from individual beads, which is time consuming and requires a complicated and expensive detection system.
View Article and Find Full Text PDFIn many sensitive assays, target molecules are tagged using fluorescently labeled probes and captured using magnetic beads. Here, we introduce an optical modulation biosensing (OMB) system, which aggregates the beads into a small detection area and separates the signal from the background noise by manipulating the laser beam in and out of the cluster of beads. Using the OMB system to detect human interleukin-8, we demonstrated a limit of detection of 0.
View Article and Find Full Text PDFRapid and sensitive detection of human pathogens, such as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is an urgent and challenging task for clinical laboratories. Currently, the gold standard for SARS-CoV-2-specific RNA is based on quantitative RT-PCR (RT-qPCR), which relies on target amplification by Taq polymerase and uses a fluorescent resonance energy transfer-based hydrolysis probe. Although this method is accurate and specific, it is also time consuming.
View Article and Find Full Text PDFA renal outer medullary potassium channel (ROMK, Kir1.1) is a putative drug target for a novel class of diuretics with potential for treating hypertension and heart failure. Our first disclosed clinical ROMK compound, (MK-7145), demonstrated robust diuresis, natriuresis, and blood pressure lowering in preclinical models, with reduced urinary potassium excretion compared to the standard of care diuretics.
View Article and Find Full Text PDFIntroduction: A singular procedure involving both a distal tibiofibular synostosis resection with syndesmosis repair by peroneus longus ligamentoplasty has not been reported in the English literature. We report a case of simultaneous distal tibiofibular synostosis resection and syndesmosis stabilization by peroneus longus ligamentoplasty for the treatment of symptomatic distal tibiofibular synostosis formation, following neglected syndesmosis injury.
Case Presentation: A 42-year-old Caucasian man presented with ankle pain and painful range of motion 20 months following ankle trauma.
Repetitive DNA sequences are abundant in the genome of most biological species. These sequences are naturally "preamplified", which makes them a preferential target for a variety of biological assays. Current methods to detect specific DNA sequences are based on the quantitative polymerase chain reaction (PCR), which relies on target amplification by polymerase and uses a fluorescent resonance energy transfer (FRET)-based probe.
View Article and Find Full Text PDFWe present a novel assay for rapid and highly sensitive detection of specific nucleic acid fragments in human serum. In a magnetic modulation biosensing (MMB) system, magnetic beads and fluorescently labeled probes are attached to the target analyte and form a "sandwich" complex. An alternating external magnetic field gradient condenses the magnetic beads (and hence the target molecules with the fluorescently labeled probes) to the detection volume and sets them in a periodic motion, in and out of a laser beam.
View Article and Find Full Text PDFWe report a case of excessive weight loss causing bilateral common peroneal nerve entrapment in a 60-year-old patient. The bilateral peroneal involvement suggested a systemic cause. Excessive weight loss during a relatively short period can cause changes in the tissues surrounding the common peroneal nerve and lead to its entrapment in the peroneal tunnel.
View Article and Find Full Text PDFSAR in the previously described spirocyclic ROMK inhibitor series was further evolved from lead 4 by modification of the spirocyclic core and identification of novel right-side pharmacophores. In this process, it was discovered that the spiropyrrolidinone core with the carbonyl group α to the spirocenter was preferred for potent ROMK activity. Efforts aimed at decreasing hERG affinity within the series led to the discovery of multiple novel right-hand pharmacophores including 3-methoxythiadiazole, 2-methoxypyrimidine, and pyridazinone.
View Article and Find Full Text PDFA new subseries of ROMK inhibitors exemplified by 28 has been developed from the initial screening hit 1. The excellent selectivity for ROMK inhibition over related ion channels and pharmacokinetic properties across preclinical species support further preclinical evaluation of 28 as a new mechanism diuretic. Robust pharmacodynamic effects in both SD rats and dogs have been demonstrated.
View Article and Find Full Text PDFIn vitro screens using cellular preparations expressing human Ether-à-go-go related gene (hERG) potassium channels have become an intrinsic tool for evaluating cardiac liability of compounds during early preclinical stage development. Although hERG channel blocking effects are most reliably evaluated using the low-throughput, manual patch clamp technique, methods and technologies that yield hERG activity data in multiwell format are required to address increased throughput requirements. In most cases, multiwell approaches to measuring hERG activity involve achieving a reasonable balance between throughput and data fidelity.
View Article and Find Full Text PDFIn vitro hERG blocking potency is measured in drug discovery as part of an integrated cardiovascular risk assessment. Typically, the concentrations producing 50% inhibition are measured in protein-free saline solutions and compared with calculated free therapeutic in vivo Cmax values to estimate a hERG safety multiple. The free/unbound fraction is believed responsible for activity.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
June 2008
Pro-arrhythmia by noncardiac drugs has become an important safety concern in the pharmaceutical industry. The most common underlying mechanism for induction of arrhythmias by noncardiac drugs is off-target block of the native cardiac repolarizing current, I Kr. The pore-forming subunit of I Kr is encoded by the human ether-a-go-go related gene (hERG), and in vitro measurements of hERG activity has become a standard component of drug safety evaluations.
View Article and Find Full Text PDFHerein, we report the discovery of an effective strategy to modulate liabilities related to affinity of previously disclosed bicyclohexane MCHR-1 antagonists for the hERG channel. This paper describes one of several strategies incorporated to limit hERG binding via modifications of a terminal aryl group in an otherwise promising bicyclohexyl urea series.
View Article and Find Full Text PDFThe introduction of parallel patch clamp instruments offers the promise of moderate-throughput, high-fidelity voltage clamp for drug screening assays. One such device, the IonWorks HT (Molecular Devices, Sunnyvale, CA), was evaluated and compared to conventional human ethera- go-go-related gene (hERG) patch clamp data and an alternative functional screen based on rubidium flux. Data generated by the IonWorks HT and rubidium assays were compared to determine if either offered superior predictive value compared to conventional patch clamp.
View Article and Find Full Text PDFUltrason Sonochem
January 2002
The major cases for a local electrification of bubbles in a cavitation field were considered: with the fragmentation of cavitation bubbles and also with only deformation of them. The problem of the uncompensated charge on the surface of the deformed cavitation bubble is solved in general view. The radial deformations approximated by the paraboloid of rotation and axial deformations by one cavity hyperboloid of rotation.
View Article and Find Full Text PDFThe theory of local electrification of cavitation bubbles has been generalised. The major cases for a local electrification of bubbles in a cavitation field were considered; i.e.
View Article and Find Full Text PDFThe formation of functional synapses is a late milestone of neuronal differentiation. The establishment of functional synapses can be used to assess neuronal characteristics of different cell lines. In the present study, we examined the in vitro conditions that influence the ability of human neurons derived from the NT2 cell line (NT2N neurons) to establish synapses.
View Article and Find Full Text PDF