We sought to identify the impacts of Friedreich's ataxia (FRDA) on cardiomyocytes. FRDA is an autosomal recessive degenerative condition with neuronal and non-neuronal manifestations, the latter including progressive cardiomyopathy of the left ventricle, the leading cause of death in FRDA. Little is known about the cellular pathogenesis of FRDA in cardiomyocytes.
View Article and Find Full Text PDFObjective: Friedreich ataxia (FRDA) is an inherited neurodegenerative disease characterized by ataxia and cardiomyopathy. Homozygous GAA trinucleotide repeat expansions in the first intron of FXN occur in 96% of affected individuals and reduce frataxin expression. Remaining individuals are compound heterozygous for a GAA expansion and a FXN point/insertion/deletion mutation.
View Article and Find Full Text PDFFriedreich ataxia (FRDA) is due to a triplet repeat expansion in FXN, resulting in deficiency of the mitochondrial protein frataxin. Resveratrol is a naturally occurring polyphenol, identified to increase frataxin expression in cellular and mouse models of FRDA and has anti-oxidant properties. This open-label, non-randomized trial evaluated the effect of two different doses of resveratrol on peripheral blood mononuclear cell (PBMC) frataxin levels over a 12-week period in individuals with FRDA.
View Article and Find Full Text PDFNeurodegenerative disorders such as Friedreich ataxia (FRDA) present significant challenges in developing effective therapeutic intervention. Current treatments aim to manage symptoms and thus improve quality of life, but none can cure, nor are proven to slow, the neurodegeneration inherent to this disease. The primary clinical features of FRDA include progressive ataxia and shortened life span, with complications of cardiomyopathy being the major cause of death.
View Article and Find Full Text PDFFriedreich ataxia (FRDA) is a devastating neurodegenerative disease caused by mutations in the frataxin gene (FXN). Frataxin is an essential protein which localizes to the mitochondria and is required for the synthesis of iron-sulfur clusters and heme. Most individuals with FRDA are homozygous for trinucleotide GAA.
View Article and Find Full Text PDFBackground: Friedreich ataxia (FRDA) generally results from reduced frataxin, a mitochondrial protein involved in iron metabolism. We assessed whether HFE p.C282Y and/or p.
View Article and Find Full Text PDFAccumulating evidence supports the important role for epigenetic changes in modulating clinical parameters of complex disorders, including neurodegenerative disease. Several conditions, including fragile X syndrome and Huntington's disease are caused by trinucleotide repeat (TNR) expansions in or near specific genes. Highlighting the link between epigenetic disruption and disease phenotype, recent studies have established significant correlations between clinical features, expansion size, gene expression, the chromatin profile, and DNA methylation in regions surrounding the TNR.
View Article and Find Full Text PDFObjective: Friedreich ataxia (FA) is the most common ataxia and results from an expanded GAA repeat in the first intron of FXN. This leads to epigenetic modifications and reduced frataxin. We investigated the relationships between genetic, epigenetic, and clinical parameters in a large case-control study of FA.
View Article and Find Full Text PDFFriedreich ataxia (FRDA), the most common of the hereditary ataxias, is an autosomal recessive, multisystem disorder characterised by progressive ataxia, sensory symptoms, weakness, scoliosis and cardiomyopathy. FRDA is caused by a GAA expansion in intron one of the FXN gene, leading to reduced levels of the encoded protein frataxin, which is thought to regulate cellular iron homeostasis. The cerebellar and spinocerebellar dysfunction seen in FRDA has known effects on motor function; however until recently slowed information processing has been the main feature consistently reported by the limited studies addressing cognitive function in FRDA.
View Article and Find Full Text PDFFriedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease most commonly caused by a GAA trinucleotide repeat expansion in the first intron of FXN, which reduces expression of the mitochondrial protein frataxin. Approximately 98% of individuals with FRDA are homozygous for GAA expansions, with the remaining 2% compound heterozygotes for a GAA expansion and a point mutation within FXN. Two siblings with early onset of symptoms experienced rapid loss of ambulation by 8 and 10 years.
View Article and Find Full Text PDFThe Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation.
View Article and Find Full Text PDFFriedreich ataxia (FRDA) is an autosomal recessive disorder characterised by neurodegeneration and cardiomyopathy. It is caused by a trinucleotide (GAA) repeat expansion in the first intron of the FXN gene that results in reduced synthesis of FXN mRNA and its protein product, frataxin. We report the generation of induced pluripotent stem (iPS) cell lines derived from skin fibroblasts from two FRDA patients.
View Article and Find Full Text PDFPathogenic activation of the LMO2 proto-oncogene by an oncoretroviral vector insertion in a clinical trial for X-linked severe combined immunodeficiency (X-SCID) has prompted safety concerns. We used an adeno-associated virus vector to achieve targeted insertion of a gamma-retroviral long terminal repeat (LTR) driving a GFP expression cassette with flanking loxP sites in a human T-cell line at the precise location of vector integration in one of the patients with X-SCID. The LTR-GFP cassette was inserted into the first intron of the LMO2 gene, resulting in strong activation of LMO2.
View Article and Find Full Text PDFRetroviral vectors have been developed for gene therapy of blood disorders because they achieve long-term expression of the transgene. However, interactions between the regulatory elements contained in such vectors and cellular genes may result in pathogenic proto-oncogene activation. We designed a cassette consisting of a splice acceptor followed by the coding sequences for Green Fluorescent Protein (GFP) and a polyadenylation site which was inserted in a reverse orientation in self-inactivating lentiviral vectors.
View Article and Find Full Text PDFLentiviral vectors efficiently transduce quiescent stem cells and are being evaluated for gene therapy of blood dis-orders. The risk of genotoxicity as a result of insertional mutagenesis is an important safety consideration. The hy-persensitive site 4 insulator from the chicken beta-globin locus (cHS4) possesses chromatin bar-rier and enhancer-blocking functions.
View Article and Find Full Text PDF