Publications by authors named "Marguerite Picard"

Mitochondria have their own ATP-dependent proteases that maintain the functional state of the organelle. All multicellular eukaryotes, including filamentous fungi, possess the same set of mitochondrial proteases, unlike in unicellular yeasts, where ClpXP, one of the two matricial proteases, is absent. Despite the presence of ClpXP in the filamentous fungus Podospora anserina, deletion of the gene encoding the other matricial protease, PaLon1, leads to lethality at high and low temperatures, indicating that PaLON1 plays a main role in protein quality control.

View Article and Find Full Text PDF

Background: The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development.

Results: We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection.

View Article and Find Full Text PDF

It has been previously reported that, at the time of death, the Podospora anserina AS1-4 mutant strains accumulate specific deleted forms of the mitochondrial genome and that their life spans depend on two natural alleles (variants) of the rmp1 gene: AS1-4 rmp1-2 strains exhibit life spans strikingly longer than those of AS1-4 rmp1-1. Here, we show that rmp1 is an essential gene. In silico analyses of eight rmp1 natural alleles present in Podospora isolates and of the putative homologs of this orphan gene in other filamentous fungi suggest that rmp1 evolves rapidly.

View Article and Find Full Text PDF

Mitochondrial citrate synthase (mCS) is the initial enzyme of the tricarboxylic acid (TCA) cycle. Despite the key position of this protein in respiratory metabolism, very few studies have addressed the question of the effects of the absence of mCS in development. Here we report on the characterization of 15 point mutations and a complete deletion of the cit1 gene, which encodes mCS in the filamentous fungus Podospora anserina.

View Article and Find Full Text PDF

Peroxins (PEX) are proteins required for peroxisome biogenesis. Mutations in PEX genes cause lethal diseases in humans, metabolic defects in yeasts, and developmental disfunctions in plants and filamentous fungi. Here we describe the first large-scale screening for suppressors of a pex mutation.

View Article and Find Full Text PDF