Publications by authors named "Marguerite Monfort"

After the first atomic bomb test in Alamogordo in July 1945, followed by the Hiroshima and Nagasaki bombs in August 1945, radioecology became recognized as a branch of ecology in response to the radioactive fallout associated with the subsequent proliferation of atmospheric nuclear weapons testing which continued throughout the Cold War. In parallel, environmental radiochemistry emerged in the 70s to understand the chemical behavior of possible nuclear contaminants of the environment. In this discussion we stress the need to crosslink radioecology and chemical speciation, where radiochemistry and radioecology should meet to go beyond the present state of the art.

View Article and Find Full Text PDF

Uranium is a natural radioelement (also a model for heavier actinides), but may be released through anthropogenic activities. In order to assess its environmental impact in a given ecosystem, such as the marine system, it is essential to understand its distribution and speciation, and also to quantify its bioaccumulation. Our objective was to improve our understanding of the transfer and accumulation of uranium in marine biota with mussels taken here as sentinel species because of their sedentary nature and ability to filter seawater.

View Article and Find Full Text PDF

Since the first human release of radionuclides on Earth at the end of the Second World War, impact assessments have been implemented. Radionuclides are now ubiquitous, and the impact of local accidental release on human activities, although of low probability, is of tremendous social and economic consequences. Although radionuclide inventories (at various scales) are essential as input data for impact assessment, crucial information on physicochemical speciation is lacking.

View Article and Find Full Text PDF

Atmospheric transport modeling has been used to interpret the unprecedented number of multi-isotope detections of radioxenons observed during the six months of the qualification process by the Comprehensive Nuclear-Test-Ban Treaty Organization of the new SPALAX-NG system (Système de Prélèvement Automatique en Ligne avec l'Analyse du Xénon - Nouvelle Génération). Highest Xe activity concentrations were found to be systematically associated with the concomitant measurement of several other radioxenons at the prevailing wind direction of north/northeast pointing to the Institute for Radio Elements (IRE), a medical isotope production facility located in Fleurus (Belgium). The lowest Xe activity concentrations were not associated with a prevailing wind direction or other radioxenons, indicating the contribution of distant sources (global background).

View Article and Find Full Text PDF

Uranium speciation and bioaccumulation were investigated in the sea urchin . Through accumulation experiments in a well-controlled aquarium followed by ICP-OES analysis, the quantification of uranium in the different compartments of the sea urchin was performed. Uranium is mainly distributed in the test (skeletal components), as it is the major constituent of the sea urchin, but in terms of quantity of uranium per gram of compartment, the following rating: intestinal tract > gonads ≫ test, was obtained.

View Article and Find Full Text PDF

In the ocean, complex interactions between natural and anthropogenic radionuclides, seawater, and diverse marine biota provide a unique window through which to examine ecosystem and trophic transfer mechanisms in cases of accidental dissemination. The nature of interaction between radionuclides, the marine environment, and marine species is therefore essential for better understanding transfer mechanisms from the hydrosphere to the biosphere. Although data pertaining to the rate of global transfer are often available, little is known regarding the mechanism of environmental transport and uptake of heavy radionuclides by marine species.

View Article and Find Full Text PDF

The fate of radionuclides in the environment is a cause of great concern for modern society, seen especially in 2011 after the Fukushima accident. Among the environmental compartments, seawater covers most of the earth's surface and may be directly or indirectly impacted. The interaction between radionuclides and the marine compartment is therefore essential for better understanding the transfer mechanisms from the hydrosphere to the biosphere.

View Article and Find Full Text PDF

Seawater contains radionuclides at environmental levels; some are naturally present and others come from anthropogenic nuclear activity. In this report, the molecular speciation in seawater of uranium(VI) and neptunium(V) at a concentration of 5 × 10(-5) M has been investigated for the first time using a combination of two spectroscopic techniques: Time-resolved laser-induced fluorescence (TRLIF) for U and extended X-ray absorption fine structure (EXAFS) for U and Np at the LIII edge. In parallel, the theoretical speciation of uranium and neptunium in seawater at the same concentration is also discussed and compared to spectroscopic data.

View Article and Find Full Text PDF