Infection with is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis.
View Article and Find Full Text PDFspecies are the leading cause of bacterial diarrhoea worldwide and consumption of contaminated chicken meat is the most common route of infection. Chickens can be infected with multiple strains of and during the infection cycle this pathogen must survive a wide variety of environments. Numerous studies have reported a high degree of genetic variability in this pathogen that can use antigenic and phase variation to alter the expression of key phenotypes.
View Article and Find Full Text PDFHelicobacter pylori chronically infects the gastric mucosa of humans and diseases associated with infection include gastritis, peptic ulceration, and development of gastric cancer. The organism displays a distinct tropism for the gastric mucosa of humans and for the gastric mucin MUC5AC. While the majority of organisms are found in the mucus layer overlying the epithelial cells in the stomach, adherence of the organism to the gastric epithelium is necessary for the development of disease.
View Article and Find Full Text PDFPancreatic cancer (PC) remains the fourth leading cause of cancer death; therefore, there is a clinically unmet need for novel therapeutics and diagnostic markers to treat this devastating disease. Physicians often rely on biopsy or CT for diagnosis, but more specific protein biomarkers are highly desired to assess the stage and severity of PC in a noninvasive manner. Serum biomarkers such as carbohydrate antigen 19-9 are of particular interest as they are commonly elevated in PC but have exhibited suboptimal performance in the clinic.
View Article and Find Full Text PDFcolonises the human stomach and has tropism for the gastric mucin, MUC5AC. The majority of organisms live in the adherent mucus layer within their preferred location, close to the epithelial surface where the pH is near neutral. Trefoil factor 1 (TFF1) is a small trefoil protein co-expressed with the gastric mucin MUC5AC in surface foveolar cells and co-secreted with MUC5AC into gastric mucus.
View Article and Find Full Text PDFAdv Exp Med Biol
October 2019
The clinical outcome of infection with the chronic gastric pathogen Helicobacter pylori is not the same for all individuals and also differs in different ethnic groups. Infection occurs in early life (<3 years of age), and while all infected persons mount an immune response and develop gastritis, the majority of individuals are asymptomatic. However, up to 10-15% develop duodenal ulceration, up to 1% develop gastric cancer (GC) and up to 0.
View Article and Find Full Text PDFBreast cancer is the second most common cancer in women. Recent evidence identifies a unique microbiome in breast tissue; a site previously thought to be sterile. The identification that this microbiome varies considerably from healthy subjects to cancer patients has prompted investigations into the role of specific bacterial species in oncogenesis.
View Article and Find Full Text PDFbinds to the gastric mucin, MUC5AC, and to trefoil factor, TFF1, which has been shown to interact with gastric mucin. We examined the interactions of TFF1 and with purified gastrointestinal mucins from different animal species and from humans printed on a microarray platform to investigate whether TFF1 may play a role in locating in gastric mucus. TFF1 bound almost exclusively to human gastric mucins and did not interact with human colonic mucins.
View Article and Find Full Text PDFHelicobacter pylori infection occurs within families but the transmission route is unknown. The use of stool specimens to genotype strains facilitates inclusion of complete families in transmission studies. Therefore, we aimed to use DNA from stools to analyze strain diversity in H.
View Article and Find Full Text PDFWorld J Gastroenterol
October 2017
Aim: To identify glycosylation-related genes in the HT29 derivative cell line, HT29-MTX-E12, showing differential expression on infection with ().
Methods: Polarised HT29-MTX-E12 cells were infected for 24 h with strain 26695. After infection RNA was isolated from both infected and non-infected host cells.
There is intense interest in how bacteria interact with mucin glycoproteins in order to colonise mucosal surfaces. In this study, we have assessed the feasibility of using recombinant mucin glycoproteins to study the interaction of the gastric pathogen with MUC5AC, a mucin which the organism exhibits a distinct tropism for. Stable clonal populations of cells expressing a construct encoding for a truncated version of MUC5AC containing N- and C-termini interspersed with two native tandem repeat sequences (N + 2TR + C) were generated.
View Article and Find Full Text PDFMucosal colonization and overcoming the mucosal barrier are essential steps in the establishment of infection by Campylobacter jejuni. The interaction between C. jejuni and host cells, including binding and invasion, is thought to be the key virulence factor important for pathogenesis of C.
View Article and Find Full Text PDFStudies of the interaction of bacteria with mucus-secreting cells can be complemented at a more mechanistic level by exploring the interaction of bacteria with purified mucins. Here we describe a far Western blotting approach to show how C. jejuni proteins separated by SDS PAGE and transferred to a membrane or slot blotted directly onto a membrane can be probed using biotinylated mucin.
View Article and Find Full Text PDFBackground: Akkermansia muciniphila and Desulfovibrio spp. are commensal microbes colonising the mucus gel layer of the colon. Both species have the capacity to utilise colonic mucin as a substrate.
View Article and Find Full Text PDFMolecular manipulation and expression of mucins, large glycoproteins that provide the structural framework of mucus, are challenging due to mucins' size and numerous domains, including variable number tandem repeat (VNTRs) regions that are sites of O-glycosylation. Only individual human mucin domains have been expressed in mammalian cells. We produced recombinant versions of MUC5AC, a major secreted mucin in the respiratory tract, encoding the N-terminus, C-terminus, N- and C-termini together, and N- and C-termini interspersed with two native tandem repeat sequences (N+2TR+C) in both tracheal and bronchial cell lines.
View Article and Find Full Text PDFWorld J Gastroenterol
May 2014
Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells.
View Article and Find Full Text PDFThe trefoil peptides (TFF1, TFF2 and TFF3) are a family of small highly conserved proteins that play an essential role in epithelial regeneration within the gastrointestinal tract, where they are mainly expressed. TFF1 expression is strongly induced after mucosal injury and it has been proposed that tff1 functions as a gastric tumor suppressor gene. Several studies confirm that tff1 expression is frequently lost in gastric cancer because of deletions, mutations or methylation of the tff1 promoter.
View Article and Find Full Text PDFDue to the recent rapid expansion in our understanding of the composition of the gut microflora and the consequences of altering that composition the question of how bacteria colonise mucus layers and interact with components of mucus, such as mucin, is now receiving widespread attention. Using a combination of mucus secreting cells, and a novel mucin microarray platform containing purified native mucins from different sources we recently demonstrated that two gastrointestinal pathogens, Helicobacter pylori and Campylobacter jejuni, colonise mucus by different mechanisms. This result emphasizes the potential for even closely related bacteria to interact with mucus in divergent ways to establish successful infection.
View Article and Find Full Text PDFIn this study, we tested the hypothesis that milk oligosaccharides may contribute not only to selective growth of bifidobacteria, but also to their specific adhesive ability. Human milk oligosaccharides (3'sialyllactose and 6'sialyllactose) and a commercial prebiotic (Beneo Orafti P95; oligofructose) were assayed for their ability to promote adhesion of Bifidobacterium longum subsp. infantis ATCC 15697 to HT-29 and Caco-2 human intestinal cells.
View Article and Find Full Text PDFHelicobacter pylori and Campylobacter jejuni colonize the stomach and intestinal mucus, respectively. Using a combination of mucus-secreting cells, purified mucins, and a novel mucin microarray platform, we examined the interactions of these two organisms with mucus and mucins. H.
View Article and Find Full Text PDFHelicobacter pylori colonises the gastric mucosa of humans. The majority of organisms live in mucus. These organisms are an important reservoir for infection of the underlying epithelium.
View Article and Find Full Text PDFThe Cu(I) catalysed cycloaddition reaction of azides and alkynes has been used to generate a series of divalent GlcNAc clusters with both α and β configurations. These glycoclusters can be considered as potential mimetics of an anti Helicobacter pylori hexasaccharide as they present two GlcNAc residues grafted onto a core scaffold. Two bivalent compounds based on α-O-GlcNAc were identified that selectively reduced the viability of H.
View Article and Find Full Text PDFCampylobacter jejuni is the leading cause of acute bacterial infectious diarrhea in humans. Unlike in humans, C. jejuni is a commensal within the avian host.
View Article and Find Full Text PDFHelicobacter pylori is a highly successful pathogen uniquely adapted to colonize humans. Gastric infections with this bacterium can induce pathology ranging from chronic gastritis and peptic ulcers to gastric cancer. More virulent H.
View Article and Find Full Text PDF