Publications by authors named "Margueritat J"

Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Natural design has inspired new materials, but using complex natural microstructures for functional materials is less explored.
  • The study focuses on Nacre, a biocomposite known for its unique structure, to analyze its phononic behavior at different frequencies.
  • Results show that Nacre exhibits simple properties at longer wavelengths but reveals a complex phononic spectrum when wavelengths match its structural features, challenging previous assumptions about its periodicity.
View Article and Find Full Text PDF

The ability of thin materials to shape-shift is a common occurrence that leads to dynamic pattern formation and function in natural and man-made structures. However, harnessing this concept to rationally design inorganic structures at the nanoscale has remained far from reach due to a lack of fundamental understanding of the essential physical components. Here, we show that the interaction between organic ligands and the nanocrystal surface is responsible for the full range of chiral shapes seen in colloidal nanoplatelets.

View Article and Find Full Text PDF

The vibrational dynamics in the sub-THz range of mesoporous silica nanoparticles (MSNs) having ordered cylindrical mesopores was investigated. MCM-41 and SBA-15 particles were synthesized, and their structure was determined using scanning electron microscopy (SEM), low-angle X-ray diffraction (XRD), N physisorption analyses, and Raman scattering. Brillouin scattering measurements are reported and enabled determining the stiffness of the silica walls (speed of sound) using finite element calculations for the ordered mesoporous structure.

View Article and Find Full Text PDF

Plant cells can be distinguished from animal cells by their cell walls and high-turgor pressure. Although changes in turgor and the stiffness of cell walls seem coordinated, we know little about the mechanism responsible for coordination. Evidence has accumulated that plants, like yeast, have a dedicated cell wall integrity maintenance mechanism.

View Article and Find Full Text PDF

The influence of ligands on the low frequency vibration of cadmium selenide colloidal nanoplatelets of different thicknesses is investigated using resonant low frequency Raman scattering. The strong vibration frequency shifts induced by ligand modifications as well as sharp spectral linewidths make low frequency Raman scattering a tool of choice to follow ligand exchange as well as the nano-mechanical properties of the NPLs, as evidenced by a carboxylate to thiolate exchange study. Apart from their molecular weight, the nature of the ligands, such as the sulfur to metal bond of thiols, induces a modification of the NPLs as a whole, increasing the thickness by one monolayer.

View Article and Find Full Text PDF

Measuring the complex mechanical properties of biological objects has become a necessity to answer key questions in mechanobiology and to propose innovative clinical and therapeutic strategies. In this context, Brillouin light scattering (BLS) has recently come into vogue, offering quantitative imaging of the mechanical properties without labels and with a micrometer resolution. In biological samples, the magnitude of the spectral changes are typically of a few tens of MHz, and the ability of modern spectrometers to monitor such subtle changes needs to be evaluated.

View Article and Find Full Text PDF

Au nanoparticles (NPs) characterized by distinct surface chemistry (including dodecanethiol or oleylamine as capping agent), different sizes (∼5 and ∼10 nm) and crystallinities (polycrystalline or single crystalline), were chosen as seeds to demonstrate the versatility and robustness of our two-step core-shell Au@Ag NP synthesis process. The central component of this strategy is to solubilize the shell precursor (AgNO) in oleylamine and to induce the growth of the shell on selected seeds under heating. The shell thickness is thus controlled by the temperature, the annealing time, the (shell precursor)/(seed) concentration ratio, seed size and crystallinity.

View Article and Find Full Text PDF

We report the synthesis of long narrow gold nanocrystals and the study of their vibrational dynamics using inelastic light-scattering measurements. Rich experimental spectra are obtained for monodomain gold nanorods and pentagonal twinned bipyramids. Their assignment involves diameter-dependent nontotally symmetric vibrations which are modeled in the framework of continuum elasticity by taking into account simultaneously the size, shape, and crystallinity of the nanocrystals.

View Article and Find Full Text PDF

The structure of teeth can be altered by diet, age or diseases such as caries and sclerosis. It is very important to characterize their mechanical properties to predict and understand tooth decay, design restorative dental procedures, and investigate their tribological behavior. However, existing imaging techniques are not well suited to investigating the micromechanics of teeth, in particular at tissue interfaces.

View Article and Find Full Text PDF

The structure of tumors can be recapitulated as an elastic frame formed by the connected cytoskeletons of the cells invaded by interstitial and intracellular fluids. The low-frequency mechanics of this poroelastic system, dictated by the elastic skeleton only, control tumor growth, penetration of therapeutic agents, and invasiveness. The high-frequency mechanical properties containing the additional contribution of the internal fluids have also been posited to participate in tumor progression and drug resistance, but they remain largely unexplored.

View Article and Find Full Text PDF

Our study proposes a new way to observe and explain the presence of extended plasmonic modes in disordered semi-continuous metal films before the percolation threshold. Attenuated total reflection spectroscopy allows us to follow the transition of plasmon modes from localized to delocalized resonances, but also reveals unobserved collective plasmon modes. These bright modes with out-of-plane polarization are transverse collective plasmonic resonances.

View Article and Find Full Text PDF

The acoustic vibrations of single monomers and dimers of gold nanoparticles were investigated by measuring for the first time their ultralow-frequency micro-Raman scattering. This experiment provides access not only to the frequency of the detected vibrational modes but also to their damping rate, which is obscured by inhomogeneous effects in measurements on ensembles of nano-objects. This allows a detailed analysis of the mechanical coupling occurring between two close nanoparticles (mediated by the polymer surrounding them) in the dimer case.

View Article and Find Full Text PDF

Studies of the mechanical contact between nanometer-scale particles provide fundamental insights into the mechanical properties of materials and the validity of contact laws at the nanoscale which are still under debate for contact surfaces approaching atomic dimensions. Using in situ Brillouin light scattering under high pressure, we show that effective medium theories successfully predict the macroscopic sound velocities in nanopowders if one takes into account the cementation of the contacts Our measurements suggest the relevance of the continuum approach and effective medium theories to describe the contact between nanoparticles of diameters as small as 4 nm, i.e.

View Article and Find Full Text PDF

The low frequency Raman scattering from gold nanoparticle bimodal assemblies with controlled size distributions has been studied. Special care has been paid to determining the size dependence of the Raman intensity corresponding to the quadrupolar Lamb mode. Existing models based on a microscopic description of the scattering mechanism in small particles (bond polarizability, dipole induced dipole models) predict, for any Raman-active Lamb modes, an inelastic intensity scaling as the volume of the nanoparticle.

View Article and Find Full Text PDF

Resonant acoustic modes from ultrathin CdS colloidal nanoplatelets (NPLs) are probed under high pressure using low frequency Raman spectroscopy. In particular we focus on the characterization of the recently evidenced mass load effect that is responsible for a significant downshift of the NPL breathing frequency due to the inert mass of organic ligands. We show that a key parameter in the observation of the mass effect is whether the surrounding medium is able to support THz acoustic wave propagation, at a frequency close to that of the inorganic vibrating core.

View Article and Find Full Text PDF

Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced.

View Article and Find Full Text PDF

Acoustic vibrations of assemblies of gold nanoparticles were investigated using ultralow frequency micro-Raman scattering and finite element simulations. When exciting the assemblies resonantly with the surface plasmon resonance of electromagnetically coupled nanoparticles, Raman spectra present an ultralow frequency band whose frequency lies below the lowest Raman active Lamb mode of single nanoparticles that was observed. This feature was ascribed to a Raman vibration mode of gold nanoparticle "supermolecules", that is, nanoparticles mechanically coupled by surrounding polymer molecules.

View Article and Find Full Text PDF

Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio.

View Article and Find Full Text PDF

The in situ elastic and plastic behaviors of sodium aluminosilicate glasses with different degrees of depolymerization were analyzed using Brillouin spectroscopy. The observed elastic anomaly progressively vanished with depolymerization. The densification process appears to be different from that observed in pure silica glass.

View Article and Find Full Text PDF

Raman scattering experiments have been carried out to study persistent densification in SiO(2) glass following hydrostatic compression at room temperature. A new relationship linking selective Raman parameters to the degree of densification in the glass has been developed here. This approach will allow quantification of the residual densification in silica following microindentation experiments, with the goal being the development of a constitutive law for amorphous silica.

View Article and Find Full Text PDF

The elastic and plastic behaviors of silica glasses densified at various maximum pressure reached (12 GPa, 15 GPa, 19 GPa, and 22 GPa), were analyzed using in situ Raman and Brillouin spectroscopies. The elastic anomaly was observed to progressively vanish up to a maximum pressure reached of 12 GPa, beyond which it is completely suppressed. Above the elastic anomaly the mechanical behavior of silica glass, as derived from Brillouin measurements, is interpreted in terms of pressure induced transformation of low density amorphous silica into high density amorphous silica.

View Article and Find Full Text PDF

In the present work, the combination of chemical immobilization with electron beam lithography enables the production of sensitive and reproducible SERS-active areas composed of stochastic arrangements of gold nanoparticles. The number of nanoparticles was varied from 2 to 500. Thereby a systematic analysis of these SERS-active areas allows us to study SERS efficiency as a function of the number of nanoparticles.

View Article and Find Full Text PDF

Plasmonic structures are commonly used to both confine and enhance surface electromagnetic fields. In the past ten years, their peculiar optical properties have given rise to many promising applications ranging from high density data storage to surface optical trapping. In this context, we investigated both far-field and near-field optical response of a collection of densely packed silver nanocolumns embedded in amorphous aluminum oxide using the discrete dipole approximation.

View Article and Find Full Text PDF