Publications by authors named "Marguerat S"

Article Synopsis
  • Researchers identified and studied a long non-coding RNA (lncRNA) called aal1 in fission yeast, which is linked to aging, particularly in quiescent (non-dividing) cells.
  • Deleting aal1 shortens the lifespan of these cells, while overexpressing it extends their lifespan, indicating its significant role in regulating cellular longevity.
  • Aal1 influences ribosomal protein levels and protein translation by binding to specific mRNA, reducing ribosomal content, and seems to have similar lifespan-extending effects in Drosophila, suggesting a potential universal mechanism in aging across species.
View Article and Find Full Text PDF

Coarse-grained resource allocation models (C-GRAMs) are simple mathematical models of cell physiology, where large components of the macromolecular composition are abstracted into single entities. The dynamics and steady-state behaviour of such models provides insights on optimal allocation of cellular resources and have explained experimentally observed cellular growth laws, but current models do not account for the uptake of compound sources of carbon and nitrogen. Here, we formulate a C-GRAM with nitrogen and carbon pathways converging on biomass production, with parametrizations accounting for respirofermentative and purely respiratory growth.

View Article and Find Full Text PDF

The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states.

View Article and Find Full Text PDF

Motivation: Gene expression is characterized by stochastic bursts of transcription that occur at brief and random periods of promoter activity. The kinetics of gene expression burstiness differs across the genome and is dependent on the promoter sequence, among other factors. Single-cell RNA sequencing (scRNA-seq) has made it possible to quantify the cell-to-cell variability in transcription at a global genome-wide level.

View Article and Find Full Text PDF

Steady-state cell size and geometry depend on growth conditions. Here, we use an experimental setup based on continuous culture and single-cell imaging to study how cell volume, length, width and surface-to-volume ratio vary across a range of growth conditions including nitrogen and carbon titration, the choice of nitrogen source, and translation inhibition. Overall, we find cell geometry is not fully determined by growth rate and depends on the specific mode of growth rate modulation.

View Article and Find Full Text PDF

Glioblastoma (GBM) recurrence originates from invasive margin cells that escape surgical debulking, but to what extent these cells resemble their bulk counterparts remains unclear. Here, we generated three immunocompetent somatic GBM mouse models, driven by subtype-associated mutations, to compare matched bulk and margin cells. We find that, regardless of mutations, tumors converge on common sets of neural-like cellular states.

View Article and Find Full Text PDF

Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a prerequisite for tumor initiation. Although inactivation of the tumor suppressor p53 is a frequent event in gliomagenesis, whether or how it affects quiescent NSCs (qNSCs) remains unclear.

View Article and Find Full Text PDF

Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets.

View Article and Find Full Text PDF

Despite their latent neurogenic potential, most normal parenchymal astrocytes fail to dedifferentiate to neural stem cells in response to injury. In contrast, aberrant lineage plasticity is a hallmark of gliomas, and this suggests that tumor suppressors may constrain astrocyte dedifferentiation. Here, we show that p53, one of the most commonly inactivated tumor suppressors in glioma, is a gatekeeper of astrocyte fate.

View Article and Find Full Text PDF

Innate immune responses rely on inducible gene expression programmes which, in contrast to steady-state transcription, are highly dependent on cohesin. Here we address transcriptional parameters underlying this cohesin-dependence by single-molecule RNA-FISH and single-cell RNA-sequencing. We show that inducible innate immune genes are regulated predominantly by an increase in the probability of active transcription, and that probabilities of enhancer and promoter transcription are coordinated.

View Article and Find Full Text PDF

Cellular resources are limited and their relative allocation to gene expression programmes determines physiological states and global properties such as the growth rate. Here, we determined the importance of the growth rate in explaining relative changes in protein and mRNA levels in the simple eukaryote grown on non-limiting nitrogen sources. Although expression of half of fission yeast genes was significantly correlated with the growth rate, this came alongside wide-spread nutrient-specific regulation.

View Article and Find Full Text PDF
Article Synopsis
  • Eukaryotic genomes produce long intergenic non-coding RNAs (lincRNAs) that may play a role in gene regulation, but their overall contribution to the connection between genetics and observable traits (phenotype) is not well understood.
  • Researchers used CRISPR/Cas9 to delete 141 lincRNA genes and analyzed their effects alongside 238 coding-gene mutants by testing growth and viability under various conditions, uncovering phenotypes for nearly 60% of the lincRNA deletions.
  • Additional experiments involving overexpression of 113 lincRNAs revealed that 90.3% of these strains showed altered growth, suggesting that lincRNAs have specific cellular functions that vary with environmental conditions, laying the
View Article and Find Full Text PDF

Aberrant repair of DNA double-strand breaks can recombine distant chromosomal breakpoints. Chromosomal rearrangements compromise genome function and are a hallmark of ageing. Rearrangements are challenging to detect in non-dividing cell populations, because they reflect individually rare, heterogeneous events.

View Article and Find Full Text PDF

Glioblastomas are hierarchically organised tumours driven by glioma stem cells that retain partial differentiation potential. Glioma stem cells are maintained in specialised microenvironments, but whether, or how, they undergo lineage progression outside of these niches remains unclear. Here we identify the white matter as a differentiative niche for glioblastomas with oligodendrocyte lineage competency.

View Article and Find Full Text PDF

Universal observations in Biology are sometimes described as "laws". In E. coli, experimental studies performed over the past six decades have revealed major growth laws relating ribosomal mass fraction and cell size to the growth rate.

View Article and Find Full Text PDF

Cell size varies during the cell cycle and in response to external stimuli. This requires the tight coordination, or "scaling," of mRNA and protein quantities with the cell volume in order to maintain biomolecule concentrations and cell density. Evidence in cell populations and single cells indicates that scaling relies on the coordination of mRNA transcription rates with cell size.

View Article and Find Full Text PDF

Motivation: Normalization of single-cell RNA-sequencing (scRNA-seq) data is a prerequisite to their interpretation. The marked technical variability, high amounts of missing observations and batch effect typical of scRNA-seq datasets make this task particularly challenging. There is a need for an efficient and unified approach for normalization, imputation and batch effect correction.

View Article and Find Full Text PDF

Phenotypic cell-to-cell variability is a fundamental determinant of microbial fitness that contributes to stress adaptation and drug resistance. Gene expression heterogeneity underpins this variability but is challenging to study genome-wide. Here we examine the transcriptomes of >2,000 single fission yeast cells exposed to various environmental conditions by combining imaging, single-cell RNA sequencing and Bayesian true count recovery.

View Article and Find Full Text PDF

Condensins are genome organisers that shape chromosomes and promote their accurate transmission. Several studies have also implicated condensins in gene expression, although any mechanisms have remained enigmatic. Here, we report on the role of condensin in gene expression in fission and budding yeasts.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive noncoding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyze lncRNAs in Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4× the previously annotated lncRNAs.

View Article and Find Full Text PDF

The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics.

View Article and Find Full Text PDF

Schwann cell dedifferentiation from a myelinating to a progenitor-like cell underlies the remarkable ability of peripheral nerves to regenerate following injury. However, the molecular identity of the differentiated and dedifferentiated states in vivo has been elusive. Here, we profiled Schwann cells acutely purified from intact nerves and from the wound and distal regions of severed nerves.

View Article and Find Full Text PDF