The magnitude of innate inflammatory immune responses is dependent on interactions between peripheral neural and immune cells. In particular, a cholinergic anti-inflammatory pathway (CAP) has been identified in the spleen whereby noradrenaline (NA) released by splenic nerves binds to ß2-adrenergic receptors (β2-AR) on CD4 T cells which, in turn, release acetylcholine (ACh). The binding of ACh to α7 acetylcholine receptors (α7-AChR) expressed by splenic macrophages inhibits the production of inflammatory cytokines, including tumor necrosis factor (TNF).
View Article and Find Full Text PDFIntroduction: The autonomic nervous system is a key regulator of inflammation. Electrical stimulation of the vagus nerve has been shown to have some preclinical efficacy. However, only a few clinical studies have been reported to treat inflammatory diseases.
View Article and Find Full Text PDFAnimal models for inflammatory arthritides such as rheumatoid arthritis (RA) and psoriatic arthritis are widely accepted and frequently used to identify pathological mechanisms and validate novel therapeutic strategies. Unfortunately, many publications reporting on these animal studies lack detailed description and appropriate assessment of the distinct histopathological features of arthritis: joint inflammation, cartilage damage and bone erosion. Therefore, the European consortium BeTheCure, consisting of 38 academic and industrial partners from 15 countries, set as goal to standardise the histological evaluation of joint sections from animal models of inflammatory arthritis.
View Article and Find Full Text PDFPurpose: To evaluate the morphology and course of the splenic artery, which might impact the surgical implantation of systems that stimulate the nerves surrounding the splenic artery. Experimental studies indicate that these nerves play an important part in immune modulation, and might be a potential target in the treatment of autoimmune diseases.
Methods: This retrospective cohort study made use of contrast-enhanced CT images from 40 male and 40 female patients (age 30-69) that underwent a CT examination of the aorta, kidneys or pancreas.
Inflammatory bowel diseases (IBD) have a complex, multifactorial pathophysiology with an unmet need for effective treatment. This calls for novel strategies to improve disease outcome and quality of life for patients. Increasing evidence suggests that autonomic nerves and neurotransmitters, as well as neuropeptides, modulate the intestinal immune system, and thereby regulate the intestinal inflammatory processes.
View Article and Find Full Text PDFThe autonomic nervous system innervates all lymphoid tissues including the spleen therefore providing a link between the central nervous system and the immune system. The only known mechanism of neural inhibition of inflammation in the spleen relies on the production of norepinephrine by splenic catecholaminergic fibers which binds to β2-adrenergic receptors (β 2-ARs) of CD4 T cells. These CD4 T cells trigger the release of acetylcholine that inhibits the secretion of inflammatory cytokines by macrophages through α7 nicotinic acetylcholine receptor (α7nAchRs) signaling.
View Article and Find Full Text PDFGene therapy has potential to treat rheumatic diseases; however, the presence of macrophages in the joint might hamper adeno-associated viral vector-mediated gene delivery. Here we demonstrate that in arthritic, but also in healthy, mice administration of agents that influence macrophage activity/number and/or addition of empty decoy capsids substantially improve the efficacy of recombinant adeno-associated viral vector 5 transgene expression in the joint. Pretreatment with triamcinolone or clodronate liposomes improved luciferase expression over a period of 4 weeks.
View Article and Find Full Text PDFObjective: There is an increased interest in developing gene therapy approaches for local delivery of therapeutic genes in patients with arthritis. Intra-articular (i.a.
View Article and Find Full Text PDFObjective: To investigate responsiveness, discrimination, and construct validity of a composite change index (CCI) for the assessment of single-joint involvement in inflammatory arthritis.
Methods: Evaluation of standardized response means (SRM), Guyatt effect size, and Spearman rank correlation coefficient in a randomized controlled trial investigating the effect of an intraarticular etanercept injection.
Results: The CCI showed a high SRM (1.
Introduction: Proof of concept for local gene therapy for the treatment of arthritis with immunomodulatory cytokine interferon beta (IFN-β) has shown promising results in animal models of rheumatoid arthritis (RA). For the treatment of RA patients, we engineered a recombinant adeno-associated serotype 5 vector (rAAV5) encoding human (h)IFN-β under control of a nuclear factor κB promoter (ART-I02).
Methods: The potency of ART-I02 in vitro as well as biodistribution in vivo in arthritic animals was evaluated to characterize the vector prior to clinical application.
Hum Gene Ther Clin Dev
June 2015
Preclinical studies to assess biodistribution, safety, and initial efficacy of ART-I02, an adeno-associated type 5 (rAAV5) vector expressing human interferon β (hIFN-β), were performed in a total of 24 rhesus monkeys with collagen-induced arthritis. All monkeys were naïve or showed limited neutralizing antibody (Nab) titers to AAV5 at the start of the study. Animals were injected with a single intra-articular dose of ART-I02 or placebo, consisting of 3.
View Article and Find Full Text PDFIntroduction: The cholinergic anti-inflammatory pathway can downregulate inflammation via the release of acetylcholine (ACh) by the vagus nerve. This neurotransmitter binds to the α7 subunit of nicotinic acetylcholine receptors (α7nAChR), expressed on macrophages and other immune cells. We tested the pharmacological and functional profile of two novel compounds, PMP-311 and PMP-072 and investigated their role in modulating collagen-induced arthritis (CIA) in mice.
View Article and Find Full Text PDFIntroduction: The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model.
View Article and Find Full Text PDFObjective: Glucocorticoid-induced leucine zipper (GILZ) has effects on inflammatory pathways that suggest it to be a key inhibitory regulator of the immune system, and its expression is exquisitely sensitive to induction by glucocorticoids. We undertook this study to test our hypothesis that GILZ deficiency would exacerbate experimental immune-mediated inflammation and impair the effects of glucocorticoids on inflammation and, correspondingly, that exogenous GILZ would inhibit these events.
Methods: GILZ(-/-) mice were generated using the Cre/loxP system, and responses were studied in delayed-type hypersensitivity (DTH), antigen-induced arthritis (AIA), K/BxN serum-transfer arthritis, and lipopolysaccharide (LPS)-induced cytokinemia.
Objective: The mechanisms contributing to the persistent activation of macrophages in rheumatoid arthritis (RA) are not fully understood. Some studies suggest that endogenous toll-like receptor (TLR) ligands promote the chronic inflammation observed in RA. The objective of this study was to identify endogenous TLR ligands expressed in RA synovial tissue (ST) based on their ability to bind the extracellular domains of TLR2 or TLR4.
View Article and Find Full Text PDFGene therapy is a promising new therapeutic strategy that has been explored in a wide variety of diseases, ranging from cancer to hemophilia, and ocular disorders to autoimmune diseases, among others. Proof of concept of gene transfer approaches has been shown in over 100 studies of animal models of disease, although only a few are under development for clinical application. The US Food and Drug Administration and the European Medicines Agency have not approved any viral human gene therapy products for sale so far, but the amount of gene-related research and development occurring in the United States and Europe continues to grow at a fast rate.
View Article and Find Full Text PDFThe development of novel treatments for rheumatoid arthritis (RA) requires the interplay between clinical observations and studies in animal models. Given the complex molecular pathogenesis and highly heterogeneous clinical picture of RA, there is an urgent need to dissect its multifactorial nature and to propose new strategies for preventive, early and curative treatments. Research on animal models has generated new knowledge on RA pathophysiology and aetiology and has provided highly successful paradigms for innovative drug development.
View Article and Find Full Text PDFChanges in the expression and activation status of Ras proteins are thought to contribute to the pathological phenotype of stromal fibroblast-like synoviocytes (FLS) in rheumatoid arthritis, a prototypical immune-mediated inflammatory disease. Broad inhibition of Ras and related proteins has shown protective effects in animal models of arthritis, but each of the Ras family homologues (ie, H-, K-, and N-Ras) makes distinct contributions to cellular activation. We examined the expression of each Ras protein in synovial tissue and FLS obtained from patients with rheumatoid arthritis and other forms of inflammatory arthritis.
View Article and Find Full Text PDFBackground: Although the use of TNF inhibitors has fundamentally changed the way rheumatoid arthritis (RA) is treated, not all patients respond well. It is desirable to facilitate the identification of responding and non-responding patients prior to treatment, not only to avoid unnecessary treatment but also for financial reasons. In this work we have investigated the transcriptional profile of synovial tissue sampled from RA patients before anti-TNF treatment with the aim to identify biomarkers predictive of response.
View Article and Find Full Text PDFBackground: The alpha7 subunit of nicotinic acetylcholine receptors (alpha7nAChR) can negatively regulate the synthesis and release of proinflammatory cytokines by macrophages and fibroblast-like synoviocytes in vitro. In addition, stimulation of the alpha7nAChR can reduce the severity of arthritis in murine collagen-induced arthritis (CIA).
Objective: To provide more insight into the role of the alpha7nAChR in the pathogenesis of arthritis by investigating the effect of the absence of alpha7nAChR in CIA in alpha7-deficient (alpha7nAChR(-/-)) compared with wild-type (WT) mice.
Objective: RNA interference (RNAi) is a powerful tool for sequence-specific gene silencing, and interest in its application in human diseases is growing. Given the success of recent strategies for administering gene therapy in rheumatoid arthritis using recombinant vectors such as adeno-associated virus type 5 (rAAV5) for optimized intraarticular gene transfer, we undertook the present study to determine the feasibility of using rAAV5-mediated RNAi-based therapy in arthritis.
Methods: We developed rAAV5 vectors expressing short hairpin small interfering RNA (shRNA) against tumor necrosis factor alpha (TNFalpha) under H1 promoter, and carrying the enhanced green fluorescent protein (eGFP) reporter gene under cytomegalovirus promoter (rAAV5-shTNF).