Protein aggregation correlates with many human diseases. Protein aggregates differ in structure and shape. Strategies to develop effective aggregation inhibitors that reach the clinic failed so far.
View Article and Find Full Text PDFProtein aggregates are hallmarks of neurodegenerative diseases. The protein quality control (PQC) system normally prevents proteins from misfolding and accumulation; however, proteins somehow escape this control on disease. Here we review advances in the role of PQC in protein aggregation and neurodegeneration.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder, accounting for at least two-thirds of dementia cases. A combination of genetic, epigenetic and environmental triggers is widely accepted to be responsible for the onset and development of AD. Accumulating evidence shows that oxidative stress and dysregulation of energy metabolism play an important role in AD pathogenesis, leading to neuronal dysfunction and death.
View Article and Find Full Text PDFAlzheimer's Disease is driven by protein aggregation and is characterized by accumulation of Tau protein into neurofibrillary tangles. In healthy neurons the cellular protein quality control is successfully in charge of protein folding, which raises the question to which extent this control is disturbed in disease. Here, we describe that brain cells in Alzheimer's Disease show very specific derailment of the protein quality control network.
View Article and Find Full Text PDFHop/Stip1/Sti1 is thought to be essential as a co-chaperone to facilitate substrate transfer between the Hsp70 and Hsp90 molecular chaperones. Despite this proposed key function for protein folding and maturation, it is not essential in a number of eukaryotes and bacteria lack an ortholog. We set out to identify and to characterize its eukaryote-specific function.
View Article and Find Full Text PDFCharged residues flanking aggregation-prone regions play a role in protein folding and prevention of aggregation. In this issue of The EMBO Journal, Houben et al exploit the role of such charged gatekeepers in aggregation suppression and find that negative charges are more effective than positive ones. Strikingly, the prominent Hsp70 chaperone has a strong preference for the less effective, basic gate keepers.
View Article and Find Full Text PDF