Publications by authors named "Margot Rehm"

Changes in cell morphology that involve alterations of the actin cytoskeleton are a hallmark of diseased renal tubular epithelial cells. While the impact of actin remodeling on gene expression has been analyzed in many model systems based on cell lines, this study investigated human primary tubular epithelial cells isolated from healthy parts of tumor nephrectomies. Latrunculin B (LatB) and cytochalasin D (CytoD) were used to modulate G-actin levels in a receptor-independent manner.

View Article and Find Full Text PDF

Pharmacological inhibition of oxygen sensing prolyl hydroxylase domain enzymes (PHDs) has been shown to preserve renal structure and function in various models of kidney disease. Since transforming growth factor β-1 (TGFβ-1) is one of the major mediators of kidney injury, we investigated if inhibition of PHDs with subsequent stabilization of hypoxia inducible transcription factors (HIF) might interfere with TGFβ-1 signaling with special emphasis on its target gene connective tissue growth factor (CTGF). Overnight incubation of human renal tubular cells, primary cells and cell lines, with the PDH inhibitor DMOG increased Smad3 expression, but barely affected Smad2.

View Article and Find Full Text PDF

Background: Hypoxia is a major driving force in vascularization and vascular remodeling. Pharmacological inhibition of prolyl hydroxylases (PHDs) leads to an oxygen-independent and long-lasting activation of hypoxia-inducible factors (HIFs). Whereas effects of HIF-stabilization on transcriptional responses have been thoroughly investigated in endothelial cells, the molecular details of cytoskeletal changes elicited by PHD-inhibition remain largely unknown.

View Article and Find Full Text PDF

Rho kinases are major regulators of actin cytoskeletal organization and cell motility. Depending on the model system, inhibitors of Rho kinases (ROCK) have been reported to increase or decrease endothelial cell migration. In the present study we investigated the effect of Rho kinase inhibitors on microvascular endothelial cell migration with a special focus on the isoform ROCK2.

View Article and Find Full Text PDF

The functional role of the LIM-domain protein Hic-5 was investigated in microvascular endothelial cells using a siRNA approach. Knock down of Hic-5 reduced endothelial cell spreading and impaired structural organization of the cells on basement membrane extracts. Furthermore, Hic-5 was involved in the regulation of the multifunctional protein connective tissue growth factor (CTGF, CCN2).

View Article and Find Full Text PDF

Incubation of microvascular endothelial cells with combretastatin A-4 phosphate (CA-4P), a microtubule-destabilizing compound that preferentially targets tumor vessels, altered cell morphology and induced scattering of Golgi stacks. Concomitantly, CA-4P up-regulated connective tissue growth factor (CTGF/CCN2), a pleiotropic factor with antiangiogenic properties. In contrast to the effects of other microtubule-targeting agents such as colchicine or nocodazole, up-regulation of CTGF was only detectable in sparse cells, which were not embedded in a cell monolayer.

View Article and Find Full Text PDF

Objective: Angiotensin II is recognized as one of the major mediators of cardiovascular pathology. Because connective tissue growth factor (CTGF) is involved in the pathophysiologic processes underlying fibrotic diseases, its regulation by angiotensin II was investigated.

Methods And Results: In the 2-kidney, 1-clip model of renovascular hypertension, increased expression of CTGF was detectable in the hypertrophic left ventricle.

View Article and Find Full Text PDF