The sabertooth morphology stands as a classic case of convergence, manifesting recurrently across various vertebrate groups, prominently within two carnivorans clades: felids and nimravids. Nonetheless, the evolutionary mechanisms driving these recurring phenotypes remain insufficiently understood, lacking a robust phylogenetic and spatiotemporal framework. We reconstruct the tempo and mode of craniomandibular evolution of Felidae and Nimravidae and evaluate the strength of the dichotomy between conical and saber-toothed species, as well as within saber-toothed morphotypes.
View Article and Find Full Text PDFDogs are animals with strong bite force. This strong bite mechanism has led to significant changes in the skeletal system such as fossa masseterica. It can be thought that one side is used more than the other side in chewing and is related to the preference of using the same side's hand, eye and foot.
View Article and Find Full Text PDFAmong evolutionary trends shaping phenotypic diversity over macroevolutionary scales, CREA (CRaniofacial Evolutionary Allometry) describes a tendency, among closely related species, for the smaller-sized of the group to have proportionally shorter rostra and larger braincases. Here, we used a phylogenetically broad cranial dataset, 3D geometric morphometrics, and phylogenetic comparative methods to assess the validity and strength of CREA in extinct and living felids. To test for the influence of biomechanical constraints, we quantified the impact of relative canine height on cranial shape evolution.
View Article and Find Full Text PDFSeveral large "shepherd" or livestock guardian dog (LGD) breeds were historically selectively bred to protect sheep and goat flocks in the Balkans, Anatolia, and the Caucasus regions. Although these breeds exhibit similar behavior, their morphology is different. Yet, the fine characterization of the phenotypic differences remains to be analyzed.
View Article and Find Full Text PDFEndangered animals in captivity may display reduced brain sizes due to captive conditions and limited genetic diversity. Captive diets, for example, may differ in nutrition and texture, altering cranial musculature and alleviating constraints on cranial shape development. Changes in brain size are associated with biological fitness, which may limit reintroduction success.
View Article and Find Full Text PDFThe skeleton is a complex arrangement of anatomical structures that covary to various degrees depending on both intrinsic and extrinsic factors. Among the Feliformia, many species are characterized by predator lifestyles providing a unique opportunity to investigate the impact of highly specialized hypercarnivorous diet on phenotypic integration and shape diversity. To do so, we compared the shape of the skull, mandible, humerus, and femur of species in relation to their feeding strategies (hypercarnivorous vs.
View Article and Find Full Text PDF