During vertebrate gastrulation, convergence and extension (C and E) of the primary anteroposterior (AP) embryonic axis is driven by polarized mediolateral (ML) cell intercalations and is influenced by AP axial patterning. Nodal signaling is essential for patterning of the AP axis while planar cell polarity (PCP) signaling polarizes cells with respect to this axis, but how these two signaling systems interact during C and E is unclear. We find that the neuroectoderm of Nodal-deficient zebrafish gastrulae exhibits reduced C and E cell behaviors, which require Nodal signaling in both cell- and non-autonomous fashions.
View Article and Find Full Text PDFCurr Opin Cell Biol
October 2017
It is during gastrulation that the primordial germ layers are specified, embryonic axes become morphologically manifest, and the embryonic body plan begins to take shape. As morphogenetic movements push and pull nascent tissues into position within the gastrula, new interactions are established between neighboring cells and tissues. These interactions represent an emergent property within gastrulating embryos, and serve to regulate and promote ensuing morphogenesis that establishes the next set of cell/tissue contacts, and so on.
View Article and Find Full Text PDF