During acute respiratory distress syndrome (ARDS), the increase in pulmonary vascular permeability and lung water induced by pulmonary inflammation may be related to altered lung compliance. A better understanding of the interactions between respiratory mechanics variables and lung water or capillary permeability would allow a more personalized monitoring and adaptation of therapies for patients with ARDS. Therefore, our main objective was to investigate the relationship between extravascular lung water (EVLW) and/or pulmonary vascular permeability index (PVPI) and respiratory mechanic variables in patients with COVID-19-induced ARDS.
View Article and Find Full Text PDFPatients with severe lung injury usually have a high respiratory drive, resulting in intense inspiratory effort that may even worsen lung damage by several mechanisms gathered under the name "patient-self inflicted lung injury" (P-SILI). Even though no clinical study has yet demonstrated that a ventilatory strategy to limit the risk of P-SILI can improve the outcome, the concept of P-SILI relies on sound physiological reasoning, an accumulation of clinical observations and some consistent experimental data. In this review, we detail the main pathophysiological mechanisms by which the patient's respiratory effort could become deleterious: excessive transpulmonary pressure resulting in over-distension; inhomogeneous distribution of transpulmonary pressure variations across the lung leading to cyclic opening/closing of nondependent regions and pendelluft phenomenon; increase in the transvascular pressure favoring the aggravation of pulmonary edema.
View Article and Find Full Text PDF