Publications by authors named "Margot Bacino"

Early-life establishment of tolerance to commensal bacteria at barrier surfaces carries enduring implications for immune health but remains poorly understood. Here, we showed that tolerance in skin was controlled by microbial interaction with a specialized subset of antigen-presenting cells. More particularly, CD301b type 2 conventional dendritic cells (DCs) in neonatal skin were specifically capable of uptake and presentation of commensal antigens for the generation of regulatory T (Treg) cells.

View Article and Find Full Text PDF

Periodontal disease is classically characterized by progressive destruction of the soft and hard tissues of the periodontal complex, mediated by an interplay between dysbiotic microbial communities and aberrant immune responses within gingival and periodontal tissues. Putative periodontal pathogens are enriched as the resident oral microbiota becomes dysbiotic and inflammatory responses evoke tissue destruction, thus inducing an unremitting positive feedback loop of proteolysis, inflammation, and enrichment for periodontal pathogens. Keystone microbial pathogens and sustained gingival inflammation are critical to periodontal disease progression.

View Article and Find Full Text PDF

Amelogenins, the principal proteins in the developing enamel microenvironment, self-assemble into supramolecular structures to govern the remodeling of a proteinaceous organic matrix into longitudinally ordered hydroxyapatite nanocrystal arrays. Extensive in vitro studies using purified native or recombinant proteins have revealed the potential of N-terminal amelogenin on protein self-assembly and its ability to guide the mineral deposition. We have previously identified a 14-aa domain (P2) of N-terminal amelogenin that can self-assemble into amyloid-like fibrils in vitro.

View Article and Find Full Text PDF

Objectives: The study evaluates the efficacy to remineralize artificial and natural dentin lesions through restorative dental procedures that include the Polymer-Induced Liquid Precursor (PILP) method comprising polyaspartic acid (pAsp).

Methods: Novel ionomeric cement compositions based on bioglass 45S5 and pAsp mixtures, as well as conditioning solutions (conditioner) containing 5 mg/mL pAsp, were developed and tested on demineralized dentin blocks (3-4 mm thick) on shallow and deep lesions with the thickness of 140 μm ± 50 and 700 μm ± 50, respectively. In the first treatment group, 20 μL of conditioner was applied to demineralized shallow (n = 3) and deep (n = 3) lesion specimens for 20 s before restoration with glass ionomer cement (RMGIC).

View Article and Find Full Text PDF

Unlabelled: The addition of charged polymers, like poly-aspartic acid (pAsp), to mineralizing solutions allows for transport of calcium and phosphate ions into the lumen of collagen fibrils and subsequent crystallization of oriented apatite crystals by the so-called Polymer-Induced Liquid Precursor (PILP) mineralization process, leading to the functional recovery of artificial dentin lesions by intrafibrillar mineralization of collagen.

Objective: To evaluate the feasibility of applying the PILP method as part of a restorative treatment and test for effectiveness to functionally remineralize artificial lesions in dentin.

Materials And Methods: Two methods of providing pAsp to standardized artificial lesions during a restorative procedure were applied: (A) pAsp was mixed into commercial RMGI (resin modified glass ionomer) cement formulations and (B) pAsp was added at high concentration (25mg/ml) in solution to rehydrate lesions before restoring with a RMGI cement.

View Article and Find Full Text PDF

Mechanisms of protein-guided mineralization in enamel, leading to organized fibrillar apatite nanocrystals, remain elusive. In vitro studies reveal recombinant human amelogenin (rH174), a matrix protein templating this process, self-assembles into a variety of structures. This study endeavors to clarify the self-assembly of rH174 in physiologically relevant conditions.

View Article and Find Full Text PDF