Although intraperitoneal chemotherapy (IPC) has evolved into an established treatment modality for patients with peritoneal metastasis (PM), drug penetration into tumor nodules remains limited. Drug transport during IPC is a complex process that depends on a large number of different parameters (e.g.
View Article and Find Full Text PDFDespite a strong rationale for intraperitoneal (IP) chemotherapy, the actual use of the procedure is limited by the poor penetration depth of the drug into the tissue. Drug penetration into solid tumours is a complex mass transport process that involves multiple parameters not only related to the used cytotoxic agent but also to the tumour tissue properties and even the therapeutic setup. Mathematical modelling can provide unique insights into the different transport barriers that occur during IP chemotherapy as well as offer the possibility to test different protocols or drugs without the need for experiments.
View Article and Find Full Text PDFIntraperitoneal (IP) drug delivery, either as an intraoperative chemoperfusion or as an adjuvant, repeated instillation, is an established treatment modality in patients with peritoneal carcinomatosis. The efficacy of IP drugs depends on its ability to penetrate the tumour stroma in order to reach their (sub)cellular target. It is known, that drug penetration after IP delivery is limited to a few millimetres.
View Article and Find Full Text PDFThe intraperitoneal (IP) administration of chemotherapy is an alternative treatment for peritoneal carcinomatosis, allowing for higher intratumor concentrations of the cytotoxic agent compared to intravenous administration. Nevertheless, drug penetration depths are still limited to a few millimeters. It is thus necessary to better understand the limiting factors behind this poor penetration in order to improve IP chemotherapy delivery.
View Article and Find Full Text PDF