Basement membranes (BMs) are sheet-like structures of extracellular matrix (ECM) that provide structural support for many tissues and play a central role in signaling. They are key regulators of cell behavior and tissue functions, and defects in their assembly or composition are involved in numerous human diseases. Due to the differences between human and animal embryogenesis, ethical concerns, legal constraints, the scarcity of human tissue material, and the inaccessibility of the in vivo condition, BM regulation during human embryo development has remained elusive.
View Article and Find Full Text PDFRecently, 2 branches of the wide area of synthetic biology-in vitro gametogenesis and synthetic embryo development-have gained considerable attention. Rodent induced pluripotent stem cells derived via reprogramming of somatic cells can in vitro be differentiated into gametes to produce fertile offspring. And even synthetic embryos with organ progenitors were generated ex utero entirely from murine pluripotent stem cells.
View Article and Find Full Text PDFDue to the limited accessibility of the in vivo situation, the scarcity of the human tissue, legal constraints, and ethical considerations, the underlying molecular mechanisms of disorders, such as preeclampsia, the pathological consequences of fetomaternal microchimerism, or infertility, are still not fully understood. And although substantial progress has already been made, the therapeutic strategies for reproductive system diseases are still facing limitations. In the recent years, it became more and more evident that stem cells are powerful tools for basic research in human reproduction and stem cell-based approaches moved into the center of endeavors to establish new clinical concepts.
View Article and Find Full Text PDFStem Cells Transl Med
March 2022
It is the hope of clinicians and patients alike that stem cell-based therapeutic products will increasingly become applicable remedies for many diseases and injuries. Whereas some multipotent stem cells are already routinely used in regenerative medicine, the efficacious and safe clinical translation of pluripotent stem cells is still hampered by their inherent immunogenicity and tumorigenicity. In addition, stem cells harbor the paracrine potential to affect the behavior of cells in their microenvironment.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
March 2023
In the last two decades, fetal amniotic fluid stem cells progressively attracted attention in the context of both basic research and the development of innovative therapeutic concepts. They exhibit broadly multipotent plasticity with the ability to differentiate into cells of all three embryonic germ layers and low immunogenicity. They are convenient to maintain, highly proliferative, genomically stable, non-tumorigenic, perfectly amenable to genetic modifications, and do not raise ethical concerns.
View Article and Find Full Text PDFDuring pregnancy several types of fetal cells and fetal stem cells, including pregnancy-associated progenitor cells (PAPCs), traffic into the maternal circulation. Whereas they also migrate to various maternal organs and adopt the phenotype of the target tissues to contribute to regenerative processes, fetal cells also play a role in the pathogenesis of maternal diseases. In addition, cell-free fetal DNA (cffDNA) is detectable in the plasma of pregnant women.
View Article and Find Full Text PDFCell-free fetal DNA (cffDNA)-based non-invasive prenatal testing (NIPT) is considered to be a very promising screening tool for pregnant women with an increased risk of fetal aneuploidy. Already millions of women worldwide underwent NIPT. However, due to the observed false-positive and false-negative results, this screening approach does not fulfil the criteria of a diagnostic test.
View Article and Find Full Text PDFThree-dimensional (3D) cell migration is an integral part of many physiologic processes. Although being well studied in the context of adult tissue homeostasis and cancer development, remarkably little is known about the invasive behavior of human stem cells. Using two different kinds of invasion assays, this study aimed at investigating and characterizing the 3D migratory capacity of human amniotic fluid stem cells (hAFSCs), a well-established fetal stem cell type.
View Article and Find Full Text PDFIt is known that in countries, in which basic research on human embryos is in fact prohibited by law, working with imported human embryonic stem cells (hESCs) can still be permitted. As long as hESCs are not capable of development into a complete human being, it might be the case that they do not fulfill all criteria of the local definition of an embryo. Recent research demonstrates that hESCs can be developed into entities, called embryoids, which increasingly could come closer to actual human embryos in future.
View Article and Find Full Text PDFFor obvious reasons, such as, e.g., ethical concerns or sample accessibility, model systems are of highest importance to study the underlying molecular mechanisms of human maladies with the aim to develop innovative and effective therapeutic strategies.
View Article and Find Full Text PDFGenetic and biochemical screening approaches often fail to identify functionally relevant pathway networks because many signaling proteins contribute to multiple gene ontology pathways. We developed a DRUGPATH-approach to predict pathway-interactomes from high-content drug screen data. DRUGPATH is based upon combining z-scores of effective inhibitors with their corresponding and validated targets.
View Article and Find Full Text PDFControlled invasion is essential during many physiological processes, whereas its deregulation is a hallmark of cancer. Here we demonstrate that embryonic, induced pluripotent and amniotic fluid stem cells share the property to induce the invasion of primary somatic cells of various origins through insulin-like growth factor I (IGF-I)- or II (IGF-II)-mediated paracrine activation of mechanistic target of rapamycin complex 1 (mTORC1). We propose a model in which downstream of mTORC1 this stem cell-induced invasion is mediated by hypoxia-inducible factor 1-alpha (HIF-1α)-regulated matrix metalloproteinases.
View Article and Find Full Text PDFThe aggregation of hypertrophic macrophages constitutes the basis of all granulomatous diseases, such as tuberculosis or sarcoidosis, and is decisive for disease pathogenesis. However, macrophage-intrinsic pathways driving granuloma initiation and maintenance remain elusive. We found that activation of the metabolic checkpoint kinase mTORC1 in macrophages by deletion of the gene encoding tuberous sclerosis 2 (Tsc2) was sufficient to induce hypertrophy and proliferation, resulting in excessive granuloma formation in vivo.
View Article and Find Full Text PDFSince their discovery, human pluripotent stem cells (hPSCs) including embryonic and induced pluripotent stem cells hold great promise in disease modeling and regenerative medicine. Despite intensive research and remarkable progress, it is becoming increasingly acknowledged that their yet incomplete, biological characterisation represents one of the major drawbacks to their successful translation into the clinics. The expression of the transmembrane protein E-cadherin in hPSCs is well defined to be pivotal to the maintenance of the pluripotent state by mediating intercellular adhesion and intracellular signaling.
View Article and Find Full Text PDFSince the discovery of human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), great hopes were held for their therapeutic application including disease modeling, drug discovery screenings, toxicological screenings and regenerative therapy. hESC and hiPSC have the advantage of indefinite self-renewal, thereby generating an inexhaustible pool of cells with, e.g.
View Article and Find Full Text PDFUnlabelled: Amniotic fluid stem (AFS) cells represent a major source of donor cells for cartilage repair. Recently, it became clear that mammalian target of rapamycin (mTOR) inhibition has beneficial effects on cartilage homeostasis, but the effect of mTOR on chondrogenic differentiation is still elusive. Therefore, the objectives of this study were to investigate the effects of mammalian target of rapamycin complex 1 (mTORC1) modulation on the expression of SOX9 and on its downstream targets during chondrogenic differentiation of AFS cells.
View Article and Find Full Text PDFBackground: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed.
View Article and Find Full Text PDFAll multicellular organisms require a life-long regulation of the number and the size of cells, which build up their organs. mTOR acts as a signaling nodule for the regulation of protein synthesis and growth. To activate the translational cascade, mTOR phosphorylates S6 kinase (S6K1), which is liberated from the eIF3-complex and mobilized for activation of its downstream targets.
View Article and Find Full Text PDFBackground: The ability of cells to travel long distances in order to form tissues and organs is inherently connected to embryogenesis. The process in which epithelial-like embryonic cells become motile and invasive is termed 'epithelial-to-mesenchymal transition' (EMT), while the reversion of this programme--yielding differentiated cells and organs--is called 'mesenchymal-to-epithelial transition' (MET).
Design: Here, we review the processes of EMT and MET in development and cancer and combine them with knowledge from pluripotent stem cell research.
Schwann cell development is hallmarked by the induction of a lipogenic profile. Here we used amniotic fluid stem (AFS) cells and focused on the mechanisms occurring during early steps of differentiation along the Schwann cell lineage. Therefore, we initiated Schwann cell differentiation in AFS cells and monitored as well as modulated the activity of the mechanistic target of rapamycin (mTOR) pathway, the major regulator of anabolic processes.
View Article and Find Full Text PDFIn targeted therapy, patient tumors are analyzed for aberrant activations of core cancer pathways, monitored based on biomarker expression, to ensure efficient treatment. Thus, diagnosis and therapeutic decisions are often based on the status of biomarkers determined by immunohistochemistry in combination with other clinical parameters. Standard evaluation of cancer specimen by immunohistochemistry is frequently impeded by its dependence on subjective interpretation, showing considerable intra- and inter-observer variability.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that rapamycin decreases hepatic LDL receptor (LDL-R) expression, which likely contributes to hypercholesterolemia. Scavenger receptor, class B, type I (SR-BI) is the major HDL receptor and consequently regulating HDL-cholesterol levels and the athero-protective effects of HDL.
View Article and Find Full Text PDFBecause of recent advances, the array of human pluripotent stem cells now contains embryonic stem cells, derived from "surplus" in vitro fertilization embryos or from cloned embryos; induced pluripotent stem cells; and amniotic fluid stem cells. Here, we compare these stem cell types regarding ethical and legal concerns, cultivation conditions, genomic stability, tumor developing potentials, and applicability for disease modeling and human therapy. This overview highlights that in the future appropriate methodological management must include a decision on the "optimal" stem cell to use before the specific application.
View Article and Find Full Text PDFThe expression of pluripotent stem cell protein markers, self-renewal, the potential to differentiate in cell types of all three germlines and teratoma formation in nude mice form the spectrum of the stringent pluripotency criteria for human stem cells. Currently, intercellular variability is discussed as an additional putative defining property of pluripotent stem cells. In future, it will be of relevance to clarify the genesis of intercellular variability for each stem cell line/population before its application in basic science or therapy.
View Article and Find Full Text PDF