The increase in early-stage cancers, particularly gastrointestinal, breast and kidney cancers, has been linked to lifestyle changes such as consumption of processed foods and physical inactivity, which contribute to obesity and diabetes - major cancer risk factors. Conventional treatments such as chemotherapy and radiation often lead to severe long-term side effects, including secondary cancers and tissue damage, highlighting the need for new, safer and more effective therapies, especially for young patients. Weak electromagnetic fields (WEMF) offer a promising non-invasive approach to cancer treatment.
View Article and Find Full Text PDFCellular magnetic field effects are assumed to base on coherent singlet-triplet interconversion of radical pairs that are sensitive to applied radiofrequency (RF) and weak magnetic fields (WEMFs), known as radical pair mechanism (RPM). As a leading model, the RPM explains how quantum effects can influence biochemical and cellular signalling. Consequently, radical pairs generate reactive oxygen species (ROS) that link the RPM to redox processes, such as the response to hypoxia and the circadian clock.
View Article and Find Full Text PDFIntermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender.
View Article and Find Full Text PDFFree Radic Biol Med
September 2023
Reduced oxygen availability (hypoxia) can lead to cell and organ damage. Therefore, aerobic species depend on efficient mechanisms to counteract detrimental consequences of hypoxia. Hypoxia inducible factors (HIFs) and mitochondria are integral components of the cellular response to hypoxia and coordinate both distinct and highly intertwined adaptations.
View Article and Find Full Text PDFElectromagnetic fields are known to induce the clock protein cryptochrome to modulate intracellular reactive oxygen species (ROS) via the quantum based radical pair mechanism (RPM) in mammalian cells. Recently, therapeutic Nuclear Magnetic Resonance (tNMR) was shown to alter protein levels of the circadian clock associated Hypoxia Inducible Factor-1α (HIF-1α) in a nonlinear dose response relationship. Using synchronized NIH3T3 cells, we show that tNMR under normoxia and hypoxia persistently modifies cellular metabolism.
View Article and Find Full Text PDFBackground/aims: Since cell lines are cultured and extensively used in a variety of different research disciplines, we determined the effects of passage numbers on a commonly used embryonic zebrafish cell line (Z3).
Methods: Senescence markers, DNA damage, the redox state, gene expression, and metabolic parameters have been investigated in young (passage 5) up to very old (passage 40 and higher) cells.
Results: Besides increasing DNA damage, we also found elevated metabolic capacity and a shift to a more reduced cellular redox state in the cells.
The influence of low intensity electromagnetic fields on circadian clocks of cells and tissues has gained increasing scientific interest, either as a therapeutic tool or as a potential environmental hazard. Nuclear Magnetic Resonance (NMR) refers to the property of certain atomic nuclei to absorb the energy of radio waves under a corresponding magnetic field. NMR forms the basis for Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy and, in a low-intensity form, for NMR therapy (tNMR).
View Article and Find Full Text PDFThe hypoxia-inducible transcription factors are key regulators for the physiological response to low oxygen availability. In vertebrates, typically three Hif-α isoforms, Hif-1α, Hif-2α and Hif-3α, are expressed, each of which, together with Hif-1β, may form a functional heterodimer under hypoxic conditions, controlling expression of hundreds of genes. A teleost-specific whole-genome duplication complicates the analysis of isoform-specific functions in fish, but recent studies suggest that the existence of paralogues of a specific isoform opens up the possibility for a subfunctionalization.
View Article and Find Full Text PDFBackground/aims: Reduced oxygen availability, hypoxia, is frequently encountered by organisms, tissues and cells, in aquatic environments as well as in high altitude or under pathological conditions such as infarct, stroke or cancer. The hypoxic signaling pathway was found to be mutually intertwined with circadian timekeeping in vertebrates and, as reported recently, also in mammals. However, the impact of hypoxia on intracellular metabolic oscillations is still unknown.
View Article and Find Full Text PDFIn zebrafish, as in most vertebrates, three different isoforms of the hypoxia-inducible transcription factor, Hif-1α, Hif-2α, and Hif-3α, have been identified. The expression data of genes encoding these three proteins, as analyzed so far, show distinct expression patterns for all three isoforms during early development, under hypoxic conditions, and during exercise, suggesting differential roles for all three proteins under these different conditions. While isoform-specific functions for Hif-1α and Hif-2α have been identified in recent years, the role of Hif-3α remains somewhat elusive.
View Article and Find Full Text PDFThe circadian clock and the hypoxic signaling pathway play critical roles in physiological homeostasis as well as in pathogenesis. The bi-directionality of the interaction between both pathways has been shown on physiological and only recently also on molecular level. But the consequences of a disturbed circadian rhythm for the hypoxic response and the cardiovascular system have never been addressed in any organism.
View Article and Find Full Text PDFTolerance towards hypoxia is highly pronounced in zebrafish. In this study even beneficial effects of hypoxia, specifically enhanced survival of zebrafish larvae, could be demonstrated. This effect was actually more pronounced in breakdance mutants, which phenotypically show cardiac arrhythmia.
View Article and Find Full Text PDFThe circadian clock and the hypoxic signaling pathway play critical roles in physiological homeostasis as well as in tumorgenesis. Interactions between both pathways have repeatedly been reported for mammals during the last decade, the molecular basis, though, has not been identified so far. Expression levels of oxygen-regulated and circadian clock genes in zebrafish larvae (Danio rerio) and zebrafish cell lines were significantly altered under hypoxic conditions.
View Article and Find Full Text PDFPermeability of rainbow trout gill pavement cells cultured on permeable supports (single seeded inserts) changes upon exposure to freshwater or treatment with cortisol. The molecular components of this change are largely unknown, but tight junctions that regulate the paracellular pathway are prime candidates in this adaptational process. Using differential display polymerase chain reaction we found a set of 17 differentially regulated genes in trout pavement cells that had been exposed to freshwater apically for 24 h.
View Article and Find Full Text PDFExercise as well as hypoxia cause an increase in angiogenesis, changes in mitochondrial density and alterations in metabolism, but it is still under debate whether the hypoxia inducible factor (HIF) is active during both situations. In this study gene expression analysis of zebrafish larvae that were raised under normoxic, hypoxic, or training conditions were compared, using microarray analysis, quantitative real-time PCR and protein data. Although HIF expression is posttranslationally regulated, mRNA expression levels of all three isoforms (HIF-1α, HIF-2α, and HIF-3α) differed in each of the experimental groups, but the changes observed in hypoxic animals were much smaller than in trained larvae.
View Article and Find Full Text PDFBackground: The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu(+) or Cd(2+). They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform.
View Article and Find Full Text PDFIn the present study, the zebrafish breakdance mutant (bre) was used to assess the role of blood flow in development because it has been previously shown that bre larvae have a chronically reduced cardiac output as a result of ventricular contraction following only every second atrial contraction in addition to an atrial bradycardia. We confirmed a 50% reduction compared with control fish and further showed that blood flow in the caudal part of the dorsal aorta decreased by 80%. Associated with these reductions in blood flow were indications of developmental retardation in bre mutants, specifically delayed hatching, reduced cell proliferation, and a transiently decreased growth rate.
View Article and Find Full Text PDFMetallothioneins (MTs) are a family of multifunctional proteins involved, among others, in stress response. The Cadmium (Cd)-MT gene of the Roman snail (Helix pomatia), for example, encodes for a protein induced upon cadmium exposure. While our previous studies have demonstrated that the expressed Cd-MT isoform of Roman snails assists detoxification of cadmium, the present work focuses on the potential plasticity of this gene in response to a variety of environmental stressors playing a crucial role in the specific ecological niche of H.
View Article and Find Full Text PDFBackground/aims: Mutations in the gene encoding the cystic fibrosis transmembrane regulator (CFTR) are over-represented in patients with chronic pancreatitis: 13-37% of pancreatitis patients are heterozygous for CFTR mutations, compared with the carrier estimate of 3.2% in the central European population. The aim of the current study was to investigate the association between clinical manifestations of pancreatitis and CFTR carrier status.
View Article and Find Full Text PDFCepaea hortensis is a widespread terrestrial pulmonate, contributing significantly to element fluxes in soil ecosystems. Due to its capacity of accumulating certain trace elements in its tissues, Cepaea hortensis can serve as a biological indicator of metal accumulation in contaminated areas. In response to Cd exposure this species and related helicid pulmonates are also able to synthesize an inducible, Cd-binding metallothionein (MT) isoform specifically serving in binding and detoxification of this metal.
View Article and Find Full Text PDF