Publications by authors named "Margit Dylla"

Detection of sounds is a fundamental function of the auditory system. Although studies of auditory cortex have gained substantial insight into detection performance using behaving animals, previous subcortical studies have mostly taken place under anesthesia, in passively listening animals, or have not measured performance at threshold. These limitations preclude direct comparisons between neuronal responses and behavior.

View Article and Find Full Text PDF

The auditory system is thought to process complex sounds through overlapping bandpass filters. Frequency selectivity as estimated by auditory filters has been well quantified in humans and other mammalian species using behavioral and physiological methodologies, but little work has been done to examine frequency selectivity in nonhuman primates. In particular, knowledge of macaque frequency selectivity would help address the recent controversy over the sharpness of cochlear tuning in humans relative to other animal species.

View Article and Find Full Text PDF

Detection thresholds for auditory stimuli (signals) increase in the presence of maskers. Natural environments contain maskers/distractors that can have a wide range of spatiotemporal properties relative to the signal. While these parameters have been well explored psychophysically in humans, they have not been well explored in animal models, and their neuronal underpinnings are not well understood.

View Article and Find Full Text PDF

In natural environments, many sounds are amplitude-modulated. Amplitude modulation is thought to be a signal that aids auditory object formation. A previous study of the detection of signals in noise found that when tones or noise were amplitude-modulated, the noise was a less effective masker, and detection thresholds for tones in noise were lowered.

View Article and Find Full Text PDF

A fundamental function of the auditory system is to detect important sounds in the presence of other competing environmental sounds. This paper describes behavioral performance in a tone detection task by nonhuman primates (Macaca mulatta) and the modification of the performance by continuous background noise and by sinusoidally amplitude modulating signals or noise. Two monkeys were trained to report detection of tones in a reaction time Go/No-Go task using the method of constant stimuli.

View Article and Find Full Text PDF